【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.

(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系;

(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;

(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長(zhǎng)線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.

【答案】(1)AE=EF=AF;(2)證明見解析;(3)

【解析】

試題分析:(1)結(jié)論AE=EF=AF.只要證明AE=AF即可證明△AEF是等邊三角形.

(2)欲證明BE=CF,只要證明△BAE≌△CAF即可.

(3)過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,過(guò)點(diǎn)F作FH⊥EC于點(diǎn)H,根據(jù)FH=CFcos30°,因?yàn)镃F=BE,只要求出BE即可解決問(wèn)題.

試題解析:(1)解:結(jié)論AE=EF=AF.

理由:如圖1中,連接AC,∵四邊形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等邊三角形,∴∠BAC=∠DAC=60°

∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等邊三角形,∴AE=EF=AF.

(2)證明:如圖2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,∵∠BAE=CAF,BA=AC,B=ACF,∴△BAE≌△CAF,∴BE=CF.

(3)解:過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,過(guò)點(diǎn)F作FH⊥EC于點(diǎn)H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=,∴EB=EG﹣BG=,∵△AEB≌△AFC,∴AE=AF,EB=CF=,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等邊三角形,∴∠AEF=∠AFE=60°

∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=,∴FH=CFcos30°==點(diǎn)F到BC的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=(m﹣1)x+1的圖象上兩點(diǎn)A(x1,y1),B(x2,y2),當(dāng)x1>x2時(shí),有y1<y2,那么m的取值范圍是( 。

A. m>1 B. m<1 C. m>﹣1 D. m<﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率;
(2)求取出紙幣的總額可購(gòu)買一件51元的商品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批發(fā)商欲將一批水果由A地運(yùn)往B地,汽車貨運(yùn)公司和鐵路貨運(yùn)公司均開辦此項(xiàng)運(yùn)輸業(yè)務(wù),設(shè)運(yùn)輸過(guò)程中的損耗均為200元每小時(shí),兩貨運(yùn)公司的收費(fèi)項(xiàng):目及收費(fèi)標(biāo)準(zhǔn)如下表所示:

運(yùn)輸工具

途中平均速度
(千米/時(shí))

運(yùn)費(fèi)
(元/千米)

裝卸費(fèi)用
(元)

汽車

80

20

900

火車

100

15

2000


(1)設(shè)該兩地間的距離為x千米,若汽車貨運(yùn)公司和鐵路貨運(yùn)公司的總費(fèi)用分別為y1(元)和y2(元),則y1=元,y2=元;(用含x的代數(shù)式表示y1和y2)
(2)如果汽車的總費(fèi)用比火車的總費(fèi)用多l(xiāng)l00元,求A,B兩地的距離為多少千米?
(3)若兩地間距離為200千米,且火車、汽車在路上耽誤的時(shí)間分別為2小時(shí)和3.1小時(shí),若你是經(jīng)理,選擇哪種運(yùn)輸方式更合算些?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列算式中,計(jì)算結(jié)果是負(fù)數(shù)的是( 。

A.(﹣2+7B.|1|C.3×(﹣2D.(﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在頻數(shù)分布直方圖中,有11個(gè)小長(zhǎng)方形,若中間一個(gè)小長(zhǎng)方形的面積等于其它10個(gè)小長(zhǎng)方形面積的和的 ,且數(shù)據(jù)有160個(gè),則中間一組的頻數(shù)為(
A.32
B.0.2
C.40
D.0.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.試求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知互為補(bǔ)角的兩個(gè)角的差為35°,則較大的角是( )

A. 107.5° B. 108.5° C. 97.5° D. 72.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(2a2)3的結(jié)果是( )

A. 2a5 B. 2a6 C. 6a6 D. 8a6

查看答案和解析>>

同步練習(xí)冊(cè)答案