【題目】如圖,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.試求∠COE的度數(shù).

【答案】解:∵∠AOB=90°,OC平分∠AOB
∴∠BOC= AOB=45°.
∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°,
BOD=3∠DOE ,
∴∠DOE=45°÷3=15°,
∴∠COE=∠COD﹣∠DOE=90°﹣15°=75° 。
【解析】根據(jù)角平分線的定義得出∠BOC= AOB=45° ,故∠BOD=∠COD﹣∠BOC=90°﹣45°=45°,又因∠BOD=3∠DOE , 從而得出∠DOE=45°÷3=15°,根據(jù)角的和差得出∠COE=∠COD﹣∠DOE=90°﹣15°=75° 。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在蘭州市開展的“體育、藝術2+1”活動中,某校根據(jù)實際情況,決定主要開設A:乒乓球,B:籃球,C:跑步,D:跳繩這四種運動項目.為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你結合圖中信息解答下列問題:

(1)樣本中喜歡B項目的人數(shù)百分比是;
(2)把條形統(tǒng)計圖補充完整;
(3)已知該校有1 000人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A,B,C三點及直線EF,過B點作ABEF,過B點作BCEF,那么AB,C三點一定在同一條直線上,依據(jù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.

(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系;

(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;

(3)如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于平行四邊形ABCD的敘述,正確的是( )

A. 若AB⊥BC,則平行四邊形ABCD是菱形 B. 若AC⊥BD,則平行四邊形ABCD是正方形

C. 若AC=BD,則平行四邊形ABCD是矩形 D. 若AB=AD,則平行四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的有( )

①經(jīng)過兩點有且只有一條直線;

②兩點之間,直線最短;

③連接兩點間的線段叫做這兩點的距離;

④若ABBC,則點B是線段AC的中點.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程25x2+20x=﹣4的根的情況是( 。

A.有兩個相等的實數(shù)根B.有兩個不相等的實數(shù)根

C.只有一個實數(shù)根D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.

(1)點B表示的數(shù)為 , 點P表示的數(shù)為(用含t的式子表示);
(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P,H同時出發(fā),問點P運動多少秒時追上點H?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4的平方根是(
A.2
B.16
C.±2
D.±16

查看答案和解析>>

同步練習冊答案