【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過點(diǎn)DDFBC,垂足為F.(1)求證:DF為⊙O的切線;(2)若等邊三角形ABC的邊長為4,求圖中陰影部分的面積.

【答案】(1)見解析 (2)

【解析】

試題(1)連接DO,要證明DF為⊙O的切線只要證明∠FDP=90°即可;

(2)首先由已知可得到CD,CF的長,從而利用勾股定理可求得DF的長;再連接OE,求得CF,EF的長,從而利用S直角梯形FDOE﹣S扇形OED求得陰影部分的面積.

試題解析:

(1)證明:連接DO.

∵△ABC是等邊三角形,

∴∠A=∠C=60°.

∵OA=OD,

∴△OAD是等邊三角形.

∴∠ADO=60°,

∵DF⊥BC,

∴∠CDF=90°﹣∠C=30°,

∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,

∴DF為⊙O的切線;

(2)∵△OAD是等邊三角形,

∴AD=AO=AB=2.

∴CD=AC﹣AD=2.

Rt△CDF中,

∵∠CDF=30°,

∴CF=CD=1.

∴DF=,

連接OE,則CE=2.

∴CF=1,

∴EF=1.

∴S直角梯形FDOE=(EF+OD)DF=,

∴S扇形OED==,

∴S陰影=S直角梯形FDOE﹣S扇形OED=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.當(dāng)氣球內(nèi)氣體的氣壓大于150kPa時(shí),氣球?qū)⒈ǎ疄榱税踩瑲怏w體積V應(yīng)該是( )

A.小于0.64m3 B.大于0.64m3 C.不小于0.64m3 D.不大于0.64m3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=Rt∠,AC=6,BC=8,以點(diǎn)C為圓心,CA為半徑的圓與AB,BC分別交于點(diǎn)E,D,則BE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙O的切線,切點(diǎn)為D,AB經(jīng)過圓心O并與圓相交于點(diǎn)E,連接AD

(1)求證:AD平分∠BAC

(2)若AC=8,tanDAC=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H.點(diǎn)G在⊙O上,過點(diǎn)G作直線EF,交CD延長線于點(diǎn)E,交AB的延長線于點(diǎn)F.連接AG交CD于K,且KE=GE.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;

(2)若AC∥EF,,F(xiàn)B=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+bkb為常數(shù)分別與x軸、y軸交于點(diǎn)A﹣4,0)、B03),拋物線y=﹣x2+2x+1y軸交于點(diǎn)C,點(diǎn)E在拋物線y=﹣x2+2x+1的對稱軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),CE+EF的最小值是(  。

A. 1.4 B. 2.5 C. 2.8 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,網(wǎng)格紙中的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1,-1).

(1)把△ABC向下平移5格后得到△A1B1C1,寫出點(diǎn)A1,B1,C1的坐標(biāo),并畫出△A1B1C1;

(2)把△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)180°后得到△A2B2C2,寫出點(diǎn)A2,B2,C2的坐標(biāo),并畫出△A2B2C2;

(3)把△ABC以點(diǎn)O為位似中心放大得到△A3B3C3,使放大前后對應(yīng)線段的比為1∶2,寫出點(diǎn)A3,B3,C3的坐標(biāo),并畫出△A3B3C3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5mA處正對球門踢出(點(diǎn)Ay軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時(shí),離地面的高度為3.5m.

(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?

(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(2,0),將點(diǎn)P0繞著原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)P1,延長OP1到點(diǎn)P2,使OP2=2OP1,再將點(diǎn)P2繞著原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)P3,則點(diǎn)P3的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案