【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是_________________.
【答案】6-2≤x≤4.
【解析】試題分析:此題需要運(yùn)用極端原理求解:①BP最小時(shí),F、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長(zhǎng),進(jìn)而可求得BP的值,即BP的最小值;②BP最大時(shí),E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=34,即BP的最大值為4;根據(jù)上述兩種情況即可得到BP的取值范圍.
試題解析:如圖:
①當(dāng)F、D重合時(shí),BP的值最;
根據(jù)折疊的性質(zhì)知:AF=PF=6;
在Rt△PFC中,PF=6,FC=4,則PC=2;
∴BP=xmin=6-2;
②當(dāng)E、B重合時(shí),BP的值最大;根據(jù)折疊的性質(zhì)即可得到AB=BP=4,即BP的最大值為4;
故答案為:6-2≤x≤4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( 。
A.3B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(4,0),B(4,2),C(0,2),將△OAB沿直線OB折疊,使得點(diǎn)A落在點(diǎn)D處,OD與BC交于點(diǎn)E,則OD所在直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:
因式分解----“分組分解法”:分組分解法指通過分組分解的方式來分解用提公因式法和公式法無法直接分解的多項(xiàng)式,比如,四項(xiàng)的多項(xiàng)式一般按照“兩兩”分組或“三一”分組進(jìn)行分組分解.分析多項(xiàng)式的特點(diǎn),恰當(dāng)?shù)姆纸M是分組分解法的關(guān)鍵.
例1:“兩兩”分組:
我們把和兩項(xiàng)分為一組,和兩項(xiàng)分為一組,分別提公因式,立即解除了困難.同樣.這道題也可以這樣做:
例2:“三一”分組:
我們把,,三項(xiàng)分為一組,運(yùn)用完全平方公式得到,再與-1用平方差公式分解,問題迎刃而解.
歸納總結(jié):用分組分解法分解因式的方法是先恰當(dāng)分組,然后用提公因式法或運(yùn)用公式法繼續(xù)分解.
請(qǐng)同學(xué)們?cè)陂喿x材料的啟發(fā)下,解答下列問題:
(1)分解因式:
①;
②
(2)若多項(xiàng)式利用分組分解法可分解為,請(qǐng)寫出,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李航想利用太陽光測(cè)量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF是1.6m,請(qǐng)你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是2020年1月份的日歷.如圖所選擇的兩組四個(gè)數(shù),分別將每組數(shù)中相對(duì)的兩數(shù)相乘,再相減,例如:9×11﹣3×17= ,12×14﹣6×20= ,不難發(fā)現(xiàn),結(jié)果都是 .
(1)請(qǐng)將上面三個(gè)空補(bǔ)充完整;
(2)請(qǐng)你利用整式的運(yùn)算對(duì)以上規(guī)律進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD是△ABC的角平分線,DE//AC交AB于E,DF//AB交AC于F,
(1)求證:四邊形AEDF是菱形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AEDF是正方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請(qǐng)?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com