【題目】如圖,已知:ADABC的角平分線,DE//ACABE,DF//ABACF,

1)求證:四邊形AEDF是菱形;

2)當(dāng)ABC滿足什么條件時(shí),四邊形AEDF是正方形?請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)詳解;(2)見(jiàn)詳解.

【解析】

1)根據(jù)DEACAB于點(diǎn)E,DFABAC于點(diǎn)F,可以判斷四邊形AEDF是平行四邊形,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)即可證明結(jié)論成立;

2)根據(jù)有一個(gè)角是直角的菱形是正方形可以解答本題.

1)證明:∵DEACAB于點(diǎn)EDFABAC于點(diǎn)F,

∴四邊形AEDF是平行四邊形,∠EAD=ADF,

AD是△ABC的角平分線,

∴∠EAD=FAD,

∴∠ADF=FAD

FA=FD,

∴四邊形AEDF是菱形(有一組鄰邊相等的平行四邊形是菱形);

2)解:當(dāng)△ABC是直角三角形,∠BAC=90°,時(shí),四邊形AEDF是正方形,

理由:∵△ABC是直角三角形,∠BAC=90°,

由(1)知四邊形AEDF是菱形,

∴四邊形AEDF是正方形(有一個(gè)角是直角的菱形是正方形).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線:y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C2018,若點(diǎn)P(4035,m)在第2018段拋物線C2018上,則m的值是

A. 1 B. -1 C. 0 D. 4035

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一副秋千架,左圖是從正面看,當(dāng)秋千繩子自然下垂時(shí),踏板離地面0.5m(踏板厚度忽略不計(jì)), 右圖是從側(cè)面看,當(dāng)秋千踏板蕩起至點(diǎn)B位置時(shí),點(diǎn)B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為EF,要使折痕始終與邊ABAD有交點(diǎn),則BP的取值范圍是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:對(duì)于所有的一元二次方程ax2+bx+c0a≠0)中,對(duì)于兩根x1,x2,存在如下關(guān)系:x1+x2,x1x2.試著利用這個(gè)關(guān)系解決問(wèn)題.設(shè)方程2x25x30的兩根為x1x2,不解方程,求下列式子的值:2x12+4x22+5x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的∠BAD=∠C90°ABAD,AEBCE,△ABE繞著點(diǎn)A旋轉(zhuǎn)后能與△ADF重合,若AF5cm,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個(gè)根為1,求的值;

2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式: ;……

根據(jù)上面等式反映的規(guī)律,解答下列問(wèn)題:

1)請(qǐng)根據(jù)上述等式的特征,在括號(hào)內(nèi)填上同一個(gè)實(shí)數(shù): -5=

2)小明將上述等式的特征用字母表示為:、為任意實(shí)數(shù)).

①小明和同學(xué)討論后發(fā)現(xiàn):的取值范圍不能是任意實(shí)數(shù).請(qǐng)你直接寫出、不能取哪些實(shí)數(shù).

②是否存在兩個(gè)實(shí)數(shù)都是整數(shù)的情況?若存在,請(qǐng)求出、的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過(guò)A(2,4)、B(﹣1,1)兩點(diǎn),頂點(diǎn)坐標(biāo)為(h,k),則下列正確結(jié)論的序號(hào)是(  )

①b>1;②c>2;③h>;④k≤1.

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案