【題目】如圖,△ABC的面積為1,分別取AC、BC兩邊的中點(diǎn)A1、B1,則四邊形A1ABB1的面積為 ,再分別取A1C、B1C的中點(diǎn)A2、B2,A2C、B2C的中點(diǎn)A3、B3,依次取下去.利用這一圖形,能直觀地計(jì)算出++++=( 。

A. 1 B.

C. D. 1﹣

【答案】D

【解析】對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個(gè)統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點(diǎn).

解:∵A1、B1分別是AC、BC兩邊的中點(diǎn),

且△ABC的面積為1,

∴△A1B1C的面積為1×

∴四邊形A1ABB1的面積=△ABC的面積-△A1B1C的面積==1-;

∴四邊形A2A1B1B2的面積=△A1B1C的面積-△A2B2C的面積=-=

…,

∴第n個(gè)四邊形的面積=-=

+++…+=(1-)+(-)+…+(-)=1

故選D

“點(diǎn)睛”主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】0的相反數(shù)是( 。

A.0B.1C.正數(shù)D.負(fù)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α=39°18′,∠β=39.18°,∠γ=39.3°,下面結(jié)論正確的是(
A.∠α<∠γ<∠β
B.∠γ>∠α=∠β
C.∠α=∠γ>∠β
D.∠γ<∠α<∠β

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算中,能用平方差公式計(jì)算的是(   )

A. (x+3)(x-2) B. (-1-3x)(1+3x)

C. (a2+b)(a2-b) D. (3x+2)(2x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,稱橫.縱坐標(biāo)均為整數(shù)的點(diǎn)為整點(diǎn),如下圖所示的正方形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù)是(  )
A.13
B.21
C.17
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一點(diǎn)P,使PC+PE的和最小,則這個(gè)最小值為( )

A.4
B.2
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).

(1)A1B1C1是△ABC繞點(diǎn)__逆時(shí)針旋轉(zhuǎn)__度得到的,B1的坐標(biāo)是__;

(2)求出線段AC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】am8,an2,則am﹣2n的值等于( 。

A. 1B. 2C. 4D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師和李老師住在同一個(gè)小區(qū),離學(xué)校3000米,某天早晨,張老師和李老師分別于7點(diǎn)10分、7點(diǎn)15分離家騎自行車上班,剛好在校門口遇上,已知李老師騎車的速度是張老師的1.2倍,求他們各自騎自行車的速度分別是多少米/分?

查看答案和解析>>

同步練習(xí)冊(cè)答案