【題目】在平面直角坐標(biāo)系中,稱橫.縱坐標(biāo)均為整數(shù)的點(diǎn)為整點(diǎn),如下圖所示的正方形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù)是(  )
A.13
B.21
C.17
D.25

【答案】D
【解析】

正方形邊上的整點(diǎn)為(0,3)、(1,2)、(2,1)、(3,0)、(4,5)、(5,4)、(6,3)、(4,1)、(5,2)、(1,4)、(2,5)、(3,6);

在其內(nèi)的整點(diǎn)有(1,3)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,2)、(4,3)、(4,4)、(5,3).

故選D

根據(jù)正方形邊長(zhǎng)的計(jì)算,計(jì)算出邊長(zhǎng)上的整點(diǎn),并且根據(jù)邊長(zhǎng)的坐標(biāo)找出在正方形范圍內(nèi)的整點(diǎn).本題考查的是正方形四條邊上整點(diǎn)的計(jì)算,找到每條邊上整點(diǎn)變化的規(guī)律是解本題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(2a-12+6aa+1-3a+2)(3a-2),其中a2+2a-2020=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,點(diǎn)P自點(diǎn)A向D以1 cm/s的速度運(yùn)動(dòng),到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2 cm/s的速度運(yùn)動(dòng),到B點(diǎn)即停止,直線PQ截梯形為兩個(gè)四邊形.P,Q同時(shí)出發(fā),幾秒后其中一個(gè)四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 a3a3 的結(jié)果等于(

A.a9B.a6C.a27D.a0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.

(1)當(dāng)PCQB時(shí),OQ ;

當(dāng)PCQB時(shí),求OQ的長(zhǎng).

(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為1,分別取AC、BC兩邊的中點(diǎn)A1、B1,則四邊形A1ABB1的面積為 ,再分別取A1C、B1C的中點(diǎn)A2、B2,A2C、B2C的中點(diǎn)A3、B3,依次取下去.利用這一圖形,能直觀地計(jì)算出++++=( 。

A. 1 B.

C. D. 1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①直線AB和直線BA是同一條直線;②平角是一條直線;③兩點(diǎn)之間,線段最短;④如果AB=BC,則點(diǎn)B是線段AC的中點(diǎn).其中正確的有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為4cm,E,F(xiàn)分別為邊DC,BC上的點(diǎn),BF=1cm,CE=2cm,BE,DF相交于點(diǎn)G,求四邊形CEGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(a+2b)(a+b)-3a(a+b)

查看答案和解析>>

同步練習(xí)冊(cè)答案