【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點C在⊙O上,CBPO

1)判斷PC與⊙O的位置關系,并說明理由;

2)若AB=6CB=4,求PC的長.

【答案】(1)PC是⊙O的切線,理由見解析;(2)

【解析】試題分析:(1)要證PC是⊙O的切線,只要連接OC,再證∠PCO=90°即可.
(2)可以連接AC,根據(jù)已知先證明△ACB∽△PCO,再根據(jù)勾股定理和相似三角形的性質求出PC的長.

試題解析:(1)結論:PC是⊙O的切線.

證明:連接OC

∵CB∥PO

∴∠POA=∠B,∠POC=∠OCB

∵OC=OB

∴∠OCB=∠B

∴∠POA=∠POC

又∵OA=OC,OP=OP

∴△APO≌△CPO

∴∠OAP=∠OCP

∵PA是⊙O的切線

∴∠OAP=90°

∴∠OCP=90°

∴PC是⊙O的切線.

(2)連接AC

∵AB是⊙O的直徑

∴∠ACB=90°(6分)

由(1)知∠PCO=90°,∠B=∠OCB=∠POC

∵∠ACB=∠PCO

∴△ACB∽△PCO

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖象交于A(1,m),B(n,3)兩點,一次函數(shù)的圖象與y軸交于點C.

(1)求一次函數(shù)的解析式;

(2)點P是x軸上一點,且△BOP的面積是△BOC面積的2倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BD相交于點O,與BC相交于點N,連接BM、DN

求證:四邊形BMDN是菱形;

,,求菱形BMDN的面積和對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年學校舉行足球聯(lián)賽,共賽17輪(即每隊均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負1場得0分.在這次足球比賽中,小虎足球隊得16分,且踢平場數(shù)是所負場數(shù)的整數(shù)倍,則小虎足球隊所負場數(shù)的情況有(  )種

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF.以下結論:①∠BAF=BCF; ②點EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學中,為了書寫簡便,18世紀數(shù)學家歐拉就引進了求和符號“∑”.,,.

同學們,通過以上材料的閱讀,請回答下列問題:

(1)計算(填寫最后的結果)

=__________;____________.

(2)2+4+6+8+10用求和公式符號可表示為__________.

(3)化簡:

(4)若對于任意x都存在,請求代數(shù)式b-ab的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名射擊運動員在某次訓練中各射擊10發(fā)子彈,成績?nèi)绫恚?/span>

8

9

7

9

8

6

7

8

10

8

6

7

9

7

9

10

8

7

7

10

S2=1.8,根據(jù)上述信息完成下列問題:

1)將甲運動員的折線統(tǒng)計圖補充完整;

2)乙運動員射擊訓練成績的眾數(shù)是_____,中位數(shù)是______

3)求甲運動員射擊成績的平均數(shù)和方差,并判斷甲、乙兩人本次射擊成績的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知正方形ABCO,A0,3),點Dx軸上一動點,以AD為邊在AD的右側作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點A表示數(shù)a,B表示數(shù)b,C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.

(1)a=___,b=___c=___;

(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”);

(3)A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,B與點C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示);

(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

同步練習冊答案