【題目】ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MNABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts

1)當(0≤t≤1)時,PM=____________ ,QN=___________(t的代數(shù)式表示);

2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;

3t為何值時,以C,P,Q為頂點的三角形與ABC相似?

【答案】1PM=t ,QN= 3t);(2t= s;(3ss

【解析】

1)在ABC中,∠C=90°,∠A=60°,AC=2cm,得AB=4cm,在RtAPM中和RtBNQ中利用正切即可求得PMQN的值;

2)當PM=QN時,四邊形MNQP為矩形,建立含t的方程,求得t的值;

3)以C,P,Q為頂點的三角形與ABC相似有兩種情況,PQC∽△ABC時和QPC∽△ABC,分別相似三角形的判定和性質(zhì),求得相對應(yīng)的t的值.

1ABC中,∠C=90°,∠A=60°,AC=2cm

AB=4cm,

經(jīng)過t秒,AM=t,

RtAPM中,∠A=60°,

PM=AMtan60°=t,

BN=AB-AM-MN=4-t-1=3-t

QN= BNtan30°=3t),

故答案為:t;3t),

2)∵AC=2,

AB=4

BN=ABAMMN=4t1=3t,

QN=BNtan30°=3t),

由條件知,若四邊形MNQP為矩形,需PM=QN,即t=3t),

t=,

∴當t=s時,四邊形MNQP為矩形;

3)由(2)知,當t= s時,四邊形MNQP為矩形,此時PQAB,

∴△PQC∽△ABC

除此之外,當∠CPQ=B=30°時,QPC∽△ABC,此時 =tan30°=,

=cos60°=

AP=2AM=2t,

CP=22t,

=cos30°=

BQ= (3t),

又∵BC=2,

CQ=2

,

∴當ss時,以C,P,Q為頂點的三角形與ABC相似.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,晚上,小亮在廣場上乘涼.圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈.

(1)請你在圖中畫出小亮在照明燈(P)照射下的影子;

(2)如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt中,∠A=90°AC=4,,將沿著斜邊BC翻折,點A落在點處,點D、E分別為邊AC、BC的中點,聯(lián)結(jié)DE并延長交所在直線于點F,聯(lián)結(jié),如果為直角三角形時,那么____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4BC=6D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯(lián)結(jié)BE,那么BE的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數(shù)

頻率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m   n   ;

(2)請補全頻數(shù)分布直方圖;

(3)若成績在90分以上(包括90)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當點P運動幾秒時,SPCQ=SABC?

3)作PE⊥AC于點E,當點P、Q運動時,線段DE的長度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等腰直角三角形,∠A90°,D是腰AC上的一個動點,過點CCEBD,交BD的延長線于點E,如圖①.

1)求證:ADCDBDDE;

2)若BD是邊AC的中線,如圖②,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE. △EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

時,時,

2)拓展探究

試判斷:當0°≤α360°時,的大小有無變化?請僅就圖2的情況給出證明.

3)問題解決

△EDC旋轉(zhuǎn)至AD、E三點共線時,直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于B,C兩點,與y軸交于點A,直線y=﹣x+2經(jīng)過A,C兩點,拋物線的對稱軸與x軸交于點D,直線MN與對稱軸交于點G,與拋物線交于M,N兩點(點N在對稱軸右側(cè)),且MNx軸,MN7

1)求此拋物線的解析式.

2)求點N的坐標.

3)過點A的直線與拋物線交于點F,當tanFAC時,求點F的坐標.

4)過點D作直線AC的垂線,交AC于點H,交y軸于點K,連接CN,△AHK沿射線AC以每秒1個單位長度的速度移動,移動過程中△AHK與四邊形DGNC產(chǎn)生重疊,設(shè)重疊面積為S,移動時間為t0t),請直接寫出St的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案