分析 (1)先根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征由一次函數(shù)的表達(dá)式求出A,C兩點(diǎn)的坐標(biāo),再根據(jù)待定系數(shù)法可求二次函數(shù)的表達(dá)式;
(2)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征由二次函數(shù)的表達(dá)式求出B點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法可求一次函數(shù)BC的表達(dá)式,設(shè)ND的長為d,N點(diǎn)的橫坐標(biāo)為n,則N點(diǎn)的縱坐標(biāo)為-n+5,D點(diǎn)的坐標(biāo)為D(n,-n2+4n+5),根據(jù)兩點(diǎn)間的距離公式和二次函數(shù)的最值計(jì)算可求線段ND長度的最大值;
(3)由題意可得二次函數(shù)的頂點(diǎn)坐標(biāo)為H(2,9),點(diǎn)M的坐標(biāo)為M(4,5),作點(diǎn)H(2,9)關(guān)于y軸的對稱點(diǎn)H1,可得點(diǎn)H1的坐標(biāo),作點(diǎn)M(4,5)關(guān)于x軸的對稱點(diǎn)HM1,可得點(diǎn)M1的坐標(biāo)連結(jié)H1M1分別交x軸于點(diǎn)F,y軸于點(diǎn)E,可得H1M1+HM的長度是四邊形HEFM的最小周長,再根據(jù)待定系數(shù)法可求直線H1M1解析式,根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可求點(diǎn)F、E的坐標(biāo).
解答 解:(1)∵直線y=5x+5交x軸于點(diǎn)A,交y軸于點(diǎn)C,
∴A(-1,0),C(0,5),
∵二次函數(shù)y=ax2+4x+c的圖象過A,C兩點(diǎn),
∴$\left\{\begin{array}{l}{0=a-4+c}\\{c=5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{c=5}\end{array}\right.$,
∴二次函數(shù)的表達(dá)式為y=-x2+4x+5;
(2)如圖1,
∵點(diǎn)B是二次函數(shù)的圖象與x軸的交點(diǎn),
∴由二次函數(shù)的表達(dá)式為y=-x2+4x+5得,點(diǎn)B的坐標(biāo)B(5,0),
設(shè)直線BC解析式為y=kx+b,
∵直線BC過點(diǎn)B(5,0),C(0,5),
∴$\left\{\begin{array}{l}{5k+b=0}\\{b=5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=5}\end{array}\right.$,
∴直線BC解析式為y=-x+5,
設(shè)ND的長為d,N點(diǎn)的橫坐標(biāo)為n,
則N點(diǎn)的縱坐標(biāo)為-n+5,D點(diǎn)的坐標(biāo)為D(n,-n2+4n+5),
則d=|-n2+4n+5-(-n+5)|,
由題意可知:-n2+4n+5>-n+5,
∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-$\frac{5}{2}$)2+$\frac{25}{4}$,
∴當(dāng)n=$\frac{5}{2}$時(shí),線段ND長度的最大值是$\frac{25}{4}$;
(3)由題意可得二次函數(shù)的頂點(diǎn)坐標(biāo)為H(2,9),點(diǎn)M的坐標(biāo)為M(4,5),
作點(diǎn)H(2,9)關(guān)于y軸的對稱點(diǎn)H1,則點(diǎn)H1的坐標(biāo)為H1(-2,9),
作點(diǎn)M(4,5)關(guān)于x軸的對稱點(diǎn)HM1,則點(diǎn)M1的坐標(biāo)為M1(4,-5),
連結(jié)H1M1分別交x軸于點(diǎn)F,y軸于點(diǎn)E,
所以H1M1+HM的長度是四邊形HEFM的最小周長,則點(diǎn)F、E即為所求,
設(shè)直線H1M1解析式為y=k1x+b1,
直線H1M1過點(diǎn)M1(4,-5),H1(-2,9),
根據(jù)題意得方程組$\left\{\begin{array}{l}{-5=4{k}_{1}+_{1}}\\{9=-2{k}_{1}+_{1}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{k}_{1}=-\frac{7}{3}}\\{_{1}=\frac{13}{3}}\end{array}\right.$,
∴y=-$\frac{7}{3}$x+$\frac{13}{3}$,
∴點(diǎn)F,E的坐標(biāo)分別為($\frac{13}{7}$,0)(0,$\frac{13}{3}$).
點(diǎn)評 考查了二次函數(shù)綜合題,涉及的知識點(diǎn)有:坐標(biāo)軸上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)的表達(dá)式,待定系數(shù)法求二次函數(shù)的表達(dá)式,二次函數(shù)的頂點(diǎn)坐標(biāo),兩點(diǎn)間的距離公式,二次函數(shù)的最值,軸對稱-最短路線問題,方程思想的應(yīng)用,綜合性較強(qiáng),有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 38° | B. | 52° | C. | 76° | D. | 142° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com