【題目】我們知道:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.所以式子|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)3的點(diǎn)與表示有理數(shù)x的點(diǎn)之間的距離.
根據(jù)上述材料,直接下列問題答案:
(1)|5﹣(﹣2)|的值為_____;
(2)若|x﹣3|=1,則x的值為_____;
(3)若|x﹣3|=|x+1|,則x的值為_____;
(4)若|x﹣3|+|x+1|=7,則x的值為_____.
【答案】7 2或4 1 ﹣2.5或4.5.
【解析】
(1)先求出的結(jié)果,再求出它的絕對(duì)值即可;
(2)根據(jù)絕對(duì)值的性質(zhì)得到,解方程即可求解;
(3)根據(jù)絕對(duì)值的意義,可知是數(shù)軸上表示數(shù)x的點(diǎn)與表示數(shù)3的點(diǎn)之間的距離,是數(shù)軸上表示數(shù)x的點(diǎn)與表示數(shù)﹣1的點(diǎn)之間的距離,若,則此點(diǎn)必在與之間,故,,由此可得到關(guān)于x的方程,求出x的值即可;
(4)由于及的符號(hào)不能確定,故應(yīng)分,,三種情況解答.
解:(1)的值為7;
(2)∵,
∴,
解得x=2或4.
故x的值為2或4;
(3)根據(jù)絕對(duì)值的意義可知,此點(diǎn)必在與3之間,故,,
∴原式可化為,
∴x=1.
故x的值為1;
(4)在數(shù)軸上3和的距離為4,則滿足方程的x的對(duì)應(yīng)點(diǎn)在的左邊或3的右邊.
若x的對(duì)應(yīng)點(diǎn)在的左邊,則;
若x的對(duì)應(yīng)點(diǎn)在3的右邊,則.
所以原方程的解是或x=4.5.
故x的值為或4.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)
(1)試寫出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AC=AB,點(diǎn)D為直線BC上的一動(dòng)點(diǎn),以AD為邊作△ADE(頂點(diǎn)A、D、E按逆時(shí)針方向排列),且∠DAE=90°,AD=AE,連接CE.
⑴ 如圖1,若點(diǎn)D在BC邊上(點(diǎn)D與B、C不重合),求∠BCE的度數(shù).
⑵ 如圖2,若點(diǎn)D在CB的延長線上,若DB=5,BC=7,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級(jí)共有200名學(xué)生.為了解該年級(jí)學(xué)生A課程的學(xué)習(xí)情況,從中隨機(jī)抽取40名學(xué)生進(jìn)行測試(測試成績是百分制,且均為正整數(shù)), 并對(duì)數(shù)據(jù)(A課程測試成績)進(jìn)行整理、描述和分析.這組數(shù)據(jù)(A課程測試成績)的平均分?jǐn)?shù)是78.38. 下表是隨機(jī)抽取的40名學(xué)生A課程測試成績頻數(shù)分布表
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)80分及以上的頻數(shù)之和是21,79分及以下的頻數(shù)之和是19,而平均分?jǐn)?shù)(78.38)在80分以下. 由此可知,這次測驗(yàn)的成績高于平均分的人數(shù)________(填“多”或“少”),低于平均分的人數(shù)________(填“多”或“少”),成績屬偏________(填“高”或“低”)分布;
(3)假設(shè)該年級(jí)學(xué)生都參加此次測試,估計(jì)這次A課程測試成績90分及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)C(0,4),點(diǎn)A、B在x軸上,并且OA=OC=4OB,動(dòng)點(diǎn)P在過A、B、C三點(diǎn)的拋物線上.
(1)求拋物線的函數(shù)表達(dá)式;
(2)在直線AC上方的拋物線上,是否存在點(diǎn)P,使得△PAC的面積最大?若存在,求出P點(diǎn)坐標(biāo)及ΔPAC面積的最大值;若不存在,請(qǐng)說明理由.
(3)在x軸上是否存在點(diǎn)Q,使得△ACQ是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月25日至27日,第二屆“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議。我國準(zhǔn)備將地的茶葉1000噸和地的茶葉500噸銷往“一帶一路”沿線的地和地,地和地對(duì)茶葉需求分別為900噸和600噸,已知從、兩地運(yùn)茶葉到、兩地的運(yùn)費(fèi)(元/噸)如下表所示,設(shè)地運(yùn)到地的茶葉為噸,
35 | 40 | |
30 | 45 |
(1)用含的代數(shù)式填空:地運(yùn)往地的茶葉噸數(shù)為___________,地運(yùn)往地的茶葉噸數(shù)為___________,地運(yùn)往地的茶葉噸數(shù)為___________.
(2)用含(噸)的代數(shù)式表示總運(yùn)費(fèi)(元),并直接寫出自變量的取值范圍;
(3)求最低總運(yùn)費(fèi),并說明總運(yùn)費(fèi)最低時(shí)的運(yùn)送方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料解決問題
兩個(gè)多位數(shù)整數(shù),若它們各數(shù)位上的數(shù)字之和相等,則稱這兩個(gè)多位數(shù)互為“調(diào)和數(shù)”,例如37和82,它們各數(shù)位上的數(shù)字之和分別為3+7和8+2,顯然3+7=8+2=10故37和82互為“調(diào)和數(shù)”.
(1)下列說法錯(cuò)誤的是
A.123和51互為調(diào)和數(shù)” B.345和513互為“調(diào)和數(shù)
C.2018和8120互為“調(diào)和數(shù)” D.兩位數(shù)和互為“調(diào)和數(shù)”
(2)若A、B是兩個(gè)不等的兩位數(shù),A=,B=,A和B互為“調(diào)和數(shù)”,且A與B之和是B與A之差的3倍,求滿足條件的兩位數(shù)A.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com