【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為點(diǎn),反比例函數(shù)的圖象經(jīng)過的中點(diǎn),且與相交于點(diǎn)

1)求反比例函數(shù)的解析式;

2)求的值.

【答案】1;(2

【解析】

1)設(shè)點(diǎn)D的坐標(biāo)為(4m)(m0),則點(diǎn)A的坐標(biāo)為(43+m),由COA的中點(diǎn)可表示出點(diǎn)C的坐標(biāo),根據(jù)C、D點(diǎn)在反比例函數(shù)圖象上可得出關(guān)于k、m的二元一次方程租,解方程組即可得出結(jié)論;
2)由m的值,可找出點(diǎn)A的坐標(biāo),由此即可得出線段OB、AB的長度,從而得出△OAB為等腰直角三角形,最后得出結(jié)果.

解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為

點(diǎn)為線段的中點(diǎn),點(diǎn)的坐標(biāo)為

點(diǎn)均在反比例函數(shù)的圖象上,

,解得,

反比例函數(shù)的解析式為;

2,

點(diǎn)的坐標(biāo)為,

,

∴△OAB是等腰直角三角形,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進(jìn)價(jià)為20元的玩具以30元的價(jià)格出售時(shí),每天可售出300.經(jīng)調(diào)查當(dāng)單價(jià)每漲l元時(shí),每天少售出10.若商場想每天獲得3750元利潤,設(shè)每件玩具漲元,可列方程為:.對所列方程中出現(xiàn)的代數(shù)式,下列說法錯(cuò)誤的是(

A.表示漲價(jià)后玩具的單價(jià)

B.表示漲價(jià)后少售出玩具的數(shù)量

C.表示漲價(jià)后銷售玩具的數(shù)量

D.表示漲價(jià)后的每件玩具的單價(jià)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店分兩次購進(jìn)兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如下表所示:

購進(jìn)數(shù)量(件)

購進(jìn)所需費(fèi)用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求兩種商品每件的進(jìn)價(jià)分別是多少元?

2)商場決定商品以每件50元出售,商品以每件元出售.為滿足市場需求,需購進(jìn)、兩種商品共件,且商品的數(shù)量不少于商品數(shù)量的倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的.講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)隨時(shí)間()變化的函數(shù)圖象如圖所示(越大表示注意力越集中).當(dāng)時(shí),圖象是拋物線的一部分,當(dāng)時(shí),圖象是線段.

1)當(dāng)時(shí),求注意力指標(biāo)數(shù)與時(shí)間的函數(shù)關(guān)系式.

2)一道數(shù)學(xué)綜合題,需要講解24,問老師能否安排,使學(xué)生聽這道題時(shí),注意力的指標(biāo)數(shù)都不低于36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的對角線經(jīng)過原點(diǎn),與交于點(diǎn)軸于點(diǎn),點(diǎn)D的坐標(biāo)為反比例函數(shù)的圖象恰好經(jīng)過兩點(diǎn).

(1)的值及所在直線的表達(dá)式;

(2)求證:.

(3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則OAB的面積是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別是,為頂點(diǎn).

1)求、的值和頂點(diǎn)的坐標(biāo);

2)在軸上是否存在點(diǎn),使得是以為斜邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄂州市化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y千克)是銷售單價(jià)x元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100在銷售過程中,每天還要支付其他費(fèi)用450元

1)3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍

2)3分)求該公司銷售該原料日獲利w與銷售單價(jià)x之間的函數(shù)關(guān)系式

3)4分)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)AD為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)MN;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)EF;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

同步練習(xí)冊答案