【題目】已知:如圖,點(diǎn)是的邊上的一點(diǎn),過(guò)點(diǎn)作,,,為垂足,再過(guò)點(diǎn)作,交于點(diǎn),且.
(1)求證:;
(2)求證:垂直平分.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)連接BD,先根據(jù)DE⊥AB,DF⊥BC且DE=DF可知∠ABD=∠DBC,再根據(jù)DG∥AB即可得出∠ABD=∠BDG,進(jìn)而可得出∠BDG=∠DBC,由等角對(duì)等邊可知DG=BG;
(2)先根據(jù)(1)中∠ABD=∠DBC可知∠EDB=∠FDB,由全等三角形的判定定理可得出△BDE≌△BDF,再根據(jù)全等三角形的性質(zhì)可得出BE=BF,DE=DF,故可得出BD垂直平分EF.
證明:(1)連接BD.
∵DE⊥AB,DF⊥BC且DE=DF,
∴∠ABD=∠DBC,
又∵DG∥AB,
∴∠ABD=∠BDG,
∴∠BDG=∠DBC,
∴DG=BG;
(2)由(1)∠ABD=∠DBC可知,∠EDB=∠FDB,
在△BDE與△BDF中,
∵∠ABD=∠DBC,BD=BD,∠EDB=∠FDB,
∴△BDE≌△BDF,
∴BE=BF,DE=DF,
∴BD垂直平分EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M為線段AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=α,且DM交AC于點(diǎn)F,ME交BC于點(diǎn)G.
(1)寫出圖中三對(duì)相似三角形,并證明其中的一對(duì);
(2)連接FG,如果α=45°,AB=4,AF=3,求FC和FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是ABCD的對(duì)角線,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接CE,DF,若∠BEC=∠BAC=90°,則sin∠DFE的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,與關(guān)于直線對(duì)稱,,延長(zhǎng)交于點(diǎn),當(dāng)______時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年某企業(yè)按餐廚垃圾處理費(fèi)25元/噸,建筑垃圾處理費(fèi)16元/噸標(biāo)準(zhǔn),共支付餐廚和建筑垃圾處理費(fèi)5200元,從2014年元月起,收費(fèi)標(biāo)準(zhǔn)上調(diào)為:餐廚垃圾處理費(fèi)100元/噸,建筑垃圾處理費(fèi)30元/噸,若該企業(yè)2014年處理的這兩種垃圾數(shù)量與2013年相比沒(méi)有變化,就要多支付垃圾處理費(fèi)8800元,
(1)該企業(yè)2013年處理的餐廚垃圾和建筑垃圾各多少噸?
(2)該企業(yè)計(jì)劃2014年將上述兩種垃圾處理量減少到240噸,且建筑垃圾處理費(fèi)不超過(guò)餐廚垃圾處理量的3倍,則2014年該企業(yè)最少需要支付這兩種垃圾處理費(fèi)共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,△AEC繞A點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△APB,∠PAC=20°,求∠BAE.
(2)解不等式組:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點(diǎn)D在底邊BC上,添加下列條件后,仍無(wú)法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC, D為直線BC上一動(dòng)點(diǎn)(不與B,C重合),在AD的右側(cè)作△ADE,使得AE=AD,∠DAE=∠BAC,連接CE.
(1)當(dāng)D在線段BC上時(shí),求證:△BAD ≌△CAE;
(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),AC⊥DE,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,對(duì)角線AC平分角∠BAD,點(diǎn)P是△ABC內(nèi)一點(diǎn),連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com