【題目】陳老師對他所教的九(1)、九(2)兩個(gè)班級(jí)的學(xué)生進(jìn)行了一次檢測,批閱后對最后一道試題的得分情況進(jìn)行了歸類統(tǒng)計(jì)(各類別的得分如下表),并繪制了如圖所示的每班各類別得分人數(shù)的條形統(tǒng)計(jì)圖(不完整).
各類別的得分表
得分 | 類別 |
:沒有作答 | |
:解答但沒有正確 | |
:只得到一個(gè)正確答案 | |
:得到兩個(gè)正確答案,解答完全正確 |
已知兩個(gè)班一共有的學(xué)生得到兩個(gè)正確答案,解答完全正確,九(1)班學(xué)生這道試題的平均得分為分.請解決如下問題:
(1)九(2)班學(xué)生得分的中位數(shù)是 ______;
(2)九(1)班學(xué)生中這道試題作答情況屬于類和類的人數(shù)各是多少?
【答案】(1)分;(2)九(1)班學(xué)生中這道試題作答情況屬于類和類的人數(shù)各是人、人.
【解析】
(1)由條形圖可知九(2)班一共有學(xué)生48人,將48個(gè)數(shù)據(jù)按從小到大的順序排列,第24、25個(gè)數(shù)據(jù)都在D類,所以中位數(shù)是6分;
(2)先求出兩個(gè)班一共有多少學(xué)生,減去九(2)班的學(xué)生數(shù),得出九(1)班的學(xué)生數(shù),再根據(jù)條形圖,用九(1)班的學(xué)生數(shù)分別減去該班A、D兩類的學(xué)生數(shù)得到B類和C類的人數(shù)和,再結(jié)合九(1)班學(xué)生這道試題的平均得分為3.78分,即可求解.
(1)由條形圖可知九(2)班一共有學(xué)生:人,
將個(gè)數(shù)據(jù)按從小到大的順序排列,第、個(gè)數(shù)據(jù)都在類,所以中位數(shù)是分.
故答案為:分;
(2)兩個(gè)班一共有學(xué)生:(人),
九(1)班有學(xué)生:(人).
設(shè)九(1)班學(xué)生中這道試題作答情況屬于類和類的人數(shù)各是人、人.
由題意,得,解得.
答:九(1)班學(xué)生中這道試題作答情況屬于類和類的人數(shù)各是人、人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P是BC邊上一動(dòng)點(diǎn),連結(jié)AP,AP的垂直平分線交BD于點(diǎn)G,交 AP于點(diǎn)E,在P點(diǎn)由B點(diǎn)到C點(diǎn)的運(yùn)動(dòng)過程中,∠APG的大小變化情況是( )
A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場里某產(chǎn)品每月銷售量y(只)與銷售單價(jià)x(元)滿足一次函數(shù)關(guān)系,經(jīng)調(diào)查部分?jǐn)?shù)據(jù)如表:(已知每只進(jìn)價(jià)為10元,每只利潤=銷售單價(jià)-進(jìn)價(jià))
銷售單價(jià)x(元) | 21 | 23 | 25 | … |
月銷售額y(只) | 29 | 27 | 25 | … |
(1)求出y與x之間的函數(shù)表達(dá)式;
(2)這產(chǎn)品每月的總利潤為w元,求w關(guān)于x的函數(shù)表達(dá)式,并指出銷售單價(jià)為多少元時(shí)利潤最大,最大利潤是多少元?
(3)由于該產(chǎn)品市場需求量較大,進(jìn)價(jià)在原有基礎(chǔ)上提高了a元(a<10),但每月銷售量與銷售價(jià)仍滿足上述一次函數(shù)關(guān)系,此時(shí),隨著銷售量的增大,所得的最大利潤比(2)中的最大利潤減少了144元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東省)如圖,AB是⊙O的直徑,AB=,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過點(diǎn)C的切線交DB的延長線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場銷售時(shí),調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形紙片ABCD的邊AB,BC的長分別是10cm和7.5cm,將其四個(gè)角向內(nèi)對折后,點(diǎn)B與點(diǎn)C重合于點(diǎn)C',點(diǎn)A與點(diǎn)D重合于點(diǎn)A′.四條折痕圍成一個(gè)“信封四邊形”EHFG,其頂點(diǎn)分別在平行四邊形ABCD的四條邊上,則EF=__cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對稱軸上是否存在點(diǎn)P,使PA+PC的值最小?若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由;
(3)M是直線OC上方拋物線C2上的一個(gè)動(dòng)點(diǎn),連接MO,MC,M運(yùn)動(dòng)到什么位置時(shí),△MOC面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG、AE與CG相交于點(diǎn)M,CG與AD相交于點(diǎn)N.
求證:(1)AE=CG;
(2)ANDN=CNMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如圖所示的方式放置.點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=x+1和x軸上,則點(diǎn)B7的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com