【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛,如圖,梯形BCDG是某速滑場館建造的速滑臺(tái),已知CD∥EG,高DG為4米,且坡面BC的坡度為1:1.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為1:.
(1)求新坡面AC的坡角;
(2)原坡面底部BG的正前方10米(EB的長)處是護(hù)墻EF,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻7米.請問新的設(shè)計(jì)方案能否通過,試說明理由.(參考數(shù)據(jù):≈1.73)
【答案】(1)30°;(2)能,見解析
【解析】
(1)過點(diǎn)C作CH⊥BG,根據(jù)坡度的概念、正確的定義求出新坡面AC的坡角;
(2)根據(jù)坡度的定義分別求出AH、BH,求出EA,根據(jù)題意進(jìn)行比較,得到答案.
解:(1)如圖,過點(diǎn)C作CH⊥BG,垂足為H,則CH=DG=4,
∵新坡面AC的坡度為1:,
∴tan∠CAH==,
∴∠CAH=30°,即新坡面AC的坡角為30°;
(2)新的設(shè)計(jì)方案能通過,
∵坡面BC的坡度為1:1,
∴BH=CH=4,
∵tan∠CAH=,
∴AH=CH=4
∴AB=AH﹣BH=4﹣4,
∴AE=EB﹣AB=10﹣(4﹣4)=14﹣4≈7.08>7,
∴新的設(shè)計(jì)方案能通過.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線的對(duì)稱軸與x軸交于點(diǎn)A,將點(diǎn)A向左平移b個(gè)單位,再向上平移個(gè)單位,得到點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)(用含b的式子表示);
(2)當(dāng)拋物線經(jīng)過點(diǎn),且時(shí),求拋物線的表達(dá)式;
(3)若拋物線與線段AB恰有一個(gè)公共點(diǎn),結(jié)合圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為(,),與軸交于(,),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連結(jié)、,并把△沿邊翻折,得到四邊形, 那么是否存在點(diǎn),使四邊形為菱形?若存在,請求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大并求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“京張高鐵”是2022年北京冬奧會(huì)的重要交通基礎(chǔ)設(shè)施,考慮到不同路段的特殊情況,將根據(jù)不同的運(yùn)行區(qū)間設(shè)置不同的時(shí)速.其中北京北站到清河站分為地下的清華園隧道12千米和地上的清河段10千米兩部分,地下與地上的運(yùn)行速度之比為,地下比地上的運(yùn)行時(shí)間多2分鐘,求通過地下的清華園隧道所需的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AE⊥BC于E,交BD于F點(diǎn),下列結(jié)論:
①BF為∠ABE的角平分線;
②DF=2BF;
③2AB2=DFDB;
④sin∠BAE=.其中正確的為( )
A.①③B.①②④C.①④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,∠ACB=45°, D為AC上一點(diǎn),,連接BD,將ABD沿BD翻折至EBD,點(diǎn)A的對(duì)應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上,延長BC至點(diǎn)F,連接DF,若CF=2,,則DF長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖、圖均是的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),的頂點(diǎn)均在格點(diǎn)上,點(diǎn)為邊的中點(diǎn).分別在圖、圖中的邊上確定點(diǎn)并作出直線,使與相似.
要求:(1)圖、圖中的點(diǎn)位置不同.
(2)只用無刻度的直尺,保留適當(dāng)?shù)淖鲌D痕跡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com