【題目】如圖,∠MAN=90°,點C在邊AM上,AC=4,點B為邊AN上一動點,連接BC,△A′BC與△ABC關于BC所在直線對稱,點D,E分別為AC,BC的中點,連接DE并延長交A′B所在直線于點F,連接A′E.當△A′EF為直角三角形時,AB的長為_____.
【答案】或4
【解析】當△A′EF為直角三角形時,存在兩種情況:
①當∠A'EF=90°時,如圖1,根據(jù)對稱的性質和平行線可得:A'C=A'E=4,根據(jù)直角三角形斜邊中線的性質得:BC=2A'B=8,最后利用勾股定理可得AB的長;
②當∠A'FE=90°時,如圖2,證明△ABC是等腰直角三角形,可得AB=AC=4.
當△A′EF為直角三角形時,存在兩種情況:
①當∠A'EF=90°時,如圖1,
.
∵△A′BC與△ABC關于BC所在直線對稱,
∴A'C=AC=4,∠ACB=∠A'CB,
∵點D,E分別為AC,BC的中點,
∴D、E是△ABC的中位線,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜邊BC的中點,
∴BC=2A'E=8,
由勾股定理得:AB2=BC2-AC2,
∴AB=;
②當∠A'FE=90°時,如圖2,
.
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC與△ABC關于BC所在直線對稱,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;.
綜上所述,AB的長為4或4;
故答案為:4或4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的等邊三角形的頂點分別在邊,上當在邊上運動時,隨之在邊上運動,等邊三角形的形狀保持不變,運動過程中,點到點的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點,觀察者從點D沿垂直于BD的DE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并完成相應的任務:求根分解法是多項式因式分解的一種方法,是用求多項式對應的方程的根分離出多項式的一次因式.
設f(x)是一元多項式,若方程f(x)=0有一個根為x=a,則多項式必有一個一次因式x﹣a,于是f(x)=(x﹣a)g(x).
例如,設多項式7x2﹣x﹣6為f(x),則有f(x)=7x2﹣x﹣6,令7x2﹣x﹣6=0,容易看出,此方程有一根為x=1,則f(x)必有一個一次因式x﹣1,那么得到7x2﹣x﹣6=(x﹣1)(mx+n)(m、n為常數(shù))而(x﹣1)(mx+n)=mx2+(n﹣m)x﹣n,所以7x2﹣x﹣6=mx2+(n﹣m)x﹣n,由系數(shù)對應相等可得m=7,n=6,所以7x2﹣x﹣6=(x﹣1)(7x+6).
任務:(1)方程x3﹣3x2+4=0的一根為 .
(2)請你根據(jù)上面的材料因式分解多項式:x3﹣3x2+4= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明利用所學函數(shù)知識,對函數(shù)進行了如下研究.列表如下:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | 7 | 5 | 3 | m | 1 | n | 1 | 1 | 1 | … |
(1)自變量x的取值范圍是________;
(2)表格中:m=_______;n=________;
(3)在給出的坐標系中畫出函數(shù)的圖象;
(4)一次函數(shù)的圖象與函數(shù)的圖象交點的坐標為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若AB=3,BC=4,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC中,AB=AC=BC=10厘米,M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當點N第一次到達B點時,M、N同時停止運動.
(1)M、N同時運動幾秒后,M、N兩點重合?
(2)M、N同時運動幾秒后,可得等邊三角形△AMN?
(3)M、N在BC邊上運動時,能否得到以MN為底邊的等腰△AMN,如果存在,請求出此時M、N運動的時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,點F、E分別在邊AC、AB上,連接DE、DF,且∠AFD+∠B=180°.
(1)求證:BD=FD;
(2)當AF+FD=AE時,求證:∠AFD=2∠AED.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com