【題目】如圖,∠MAN=90°,點C在邊AM上,AC=4,點B為邊AN上一動點,連接BC,A′BCABC關于BC所在直線對稱,點D,E分別為AC,BC的中點,連接DE并延長交A′B所在直線于點F,連接A′E.當A′EF為直角三角形時,AB的長為_____

【答案】4

【解析】AEF為直角三角形時,存在兩種情況:

①當∠A'EF=90°時,如圖1,根據(jù)對稱的性質和平行線可得:A'C=A'E=4,根據(jù)直角三角形斜邊中線的性質得:BC=2A'B=8,最后利用勾股定理可得AB的長;

②當∠A'FE=90°時,如圖2,證明ABC是等腰直角三角形,可得AB=AC=4.

AEF為直角三角形時,存在兩種情況:

①當∠A'EF=90°時,如圖1,

.

∵△ABCABC關于BC所在直線對稱,

A'C=AC=4,ACB=A'CB,

∵點D,E分別為AC,BC的中點,

D、EABC的中位線,

DEAB,

∴∠CDE=MAN=90°,

∴∠CDE=A'EF,

ACA'E,

∴∠ACB=A'EC

∴∠A'CB=A'EC,

A'C=A'E=4

RtA'CB中,∵E是斜邊BC的中點,

BC=2A'E=8

由勾股定理得:AB2=BC2-AC2,

AB=

②當∠A'FE=90°時,如圖2,

.

∵∠ADF=A=DFB=90°

∴∠ABF=90°,

∵△ABCABC關于BC所在直線對稱,

∴∠ABC=CBA'=45°,

∴△ABC是等腰直角三角形,

AB=AC=4;.

綜上所述,AB的長為44;

故答案為:44.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為的等邊三角形的頂點分別在邊,上當在邊上運動時,隨之在邊上運動,等邊三角形的形狀保持不變,運動過程中,點到點的最大距離為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是直徑為的圓內接等腰三角形,如果此三角形的底邊,則的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船AB的正前方,過BAB的垂線,在垂線上截取任意長BD,CBD的中點,觀察者從點D沿垂直于BDDE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并完成相應的任務:求根分解法是多項式因式分解的一種方法,是用求多項式對應的方程的根分離出多項式的一次因式.

fx)是一元多項式,若方程fx)=0有一個根為xa,則多項式必有一個一次因式xa,于是fx)=(xagx).

例如,設多項式7x2x6fx),則有fx)=7x2x6,令7x2x60,容易看出,此方程有一根為x1,則fx)必有一個一次因式x1,那么得到7x2x6=(x1)(mx+n)(m、n為常數(shù))而(x1)(mx+n)=mx2+nmxn,所以7x2x6mx2+nmxn,由系數(shù)對應相等可得m7,n6,所以7x2x6=(x1)(7x+6).

任務:(1)方程x33x2+40的一根為   

2)請你根據(jù)上面的材料因式分解多項式:x33x2+4   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明利用所學函數(shù)知識,對函數(shù)進行了如下研究.列表如下:

x

-5

-4

-3

-2

-1

0

1

2

3

y

7

5

3

m

1

n

1

1

1

(1)自變量x的取值范圍是________

(2)表格中:m=_______;n=________

(3)在給出的坐標系中畫出函數(shù)的圖象;

(4)一次函數(shù)的圖象與函數(shù)的圖象交點的坐標為_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為矩形ABCD對角線的交點,DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若AB3BC4,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,MN分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當點N第一次到達B點時,MN同時停止運動.

1M、N同時運動幾秒后,M、N兩點重合?

2M、N同時運動幾秒后,可得等邊三角形AMN?

3MNBC邊上運動時,能否得到以MN為底邊的等腰AMN,如果存在,請求出此時MN運動的時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,點FE分別在邊AC、AB上,連接DE、DF,且∠AFD+B180°.

1)求證:BDFD;

2)當AF+FDAE時,求證:∠AFD2AED

查看答案和解析>>

同步練習冊答案