精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線AB、CD相交于點O,OE平分∠AOC,OEOF,∠AOE=32°.

1)求∠DOB的度數;

2OF是∠AOD的角平分線嗎?為什么?

【答案】1)∠DOB=64°;(2OF是∠AOD的角平分線,理由見解析.

【解析】

1)根據角平分線的性質可得∠AOC=2AOE=64°,再根據對頂角相等即可求∠DOB的度數.

2)根據垂直的定義得∠EOF=90°,再根據角的和差關系可得∠AOD=2AOF,即可得證OF是∠AOD的角平分線.

1)∵OE平分∠AOC,

∴∠AOC=2AOE=64°.

∵∠DOB與∠AOC是對頂角,

∴∠DOB=AOC=64°;

2)∵OEOF

∴∠EOF=90°,

∴∠AOF=EOF﹣∠AOE=58°.

∵∠AOD=180°﹣∠AOC=116°,

∴∠AOD=2AOF

OF是∠AOD的角平分線.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們規(guī)定:將任意三個互不相等的數a,bc按照從小到大的順序排列后,把處于中間位置的數叫做這三個數的中位數.用符號mid{ab,c}表示.例如mid{1,2,1}1

1mid{,5,3}  

2)當x<﹣2時,求mid{1+x1x,﹣1}

3)若x0,且mid{552x,2x+1}2x+1,求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 完成下面的證明.

如圖,已知ABCDEF, 寫出∠A,∠C,AFC的關系并說明理由.

解:∠AFC= . 理由如下:

ABEF(已知),

∴∠A   (兩直線平行,內錯角相等).

CDEF(已知),

∴∠C    .

∵∠AFC ,

∴∠AFC= (等量代換).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CA⊥AB,垂足為點A,AB=8,AC=4,射線BM⊥AB,垂足為點B,一動點EA點出發(fā)以2厘米/秒的速度沿射線AN運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當點E離開點A后,運動______ 秒時,△DEB△BCA全等.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:ABC是等腰三角形,CA=CB,0°<ACB≤90°.點M在邊AC上,點N在邊BC上(點M、點N不與所在線段端點重合),BN=AM,連接AN,BM,射線AGBC,延長BM交射線AG于點D,點E在直線AN上,且AE=DE.

(1)如圖,當∠ACB=90°

①求證:BCM≌△ACN;

②求∠BDE的度數;

(2)當∠ACB=α,其它多件不變時,∠BDE的度數是   (用含α的代數式表示)

(3)若ABC是等邊三角形,AB=3,點NBC邊上的三等分點,直線ED與直線BC交于點F,請直接寫出線段CF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)由大小相同的小立方塊搭成的幾何體如圖1,請在圖2的方格中畫出該幾何體的俯視圖和左視圖.

2)用小立方體搭一個幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要    個小立方塊,最多要    個小立方塊.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學現有在校學生2150人,為了解該校學生的課余活動情況,采取隨機抽樣的方法從閱讀、運動、娛樂、其它四個方面調查了若干名學生,并將調查的結果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列問題:

(1)本次調查共抽取了多少名學生?

(2)通過計算補全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數;

(3)請你估計該中學在課余時間參加閱讀和其它活動的學生一共有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2020年高峽水庫蓄水達到了177米的設計目標水位.據測算,蓄水達到177米目標水位后,高峽水庫電站的年發(fā)電量將達到842.4億千瓦時,比2017年要多發(fā)電20%.據資料顯示,火力發(fā)電時每燃燒12噸標準原煤可發(fā)電2.5萬千瓦時.(千瓦時為一種能量單位)

1)求2017年高峽電站的年發(fā)電量;

2)請計算高峽電站2020年全年發(fā)電量與2017年全年發(fā)電量相比,可為國家多節(jié)約標準原煤多少萬噸?

3)已知2019年全年發(fā)電量比2018年增加了10%,2018年與2019年的發(fā)電量之和比2017年發(fā)電量的2倍還多129億千瓦時,求2018年和2019年高峽電站年發(fā)電量.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線a,b,c表示交叉的三條公路,現要建一貨物中轉站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案