【題目】老師在講實數(shù)時畫了一個圖(如圖),即以數(shù)軸的單位長度為邊作一個正方形,然后以原點(diǎn)為圓心,正方形的對角線長為半徑畫弧交數(shù)軸于點(diǎn)A.

(1)A點(diǎn)表示的數(shù)是多少?

(2)請類比上面的作法在數(shù)軸上畫出表示-的點(diǎn)B.(請保留作圖痕跡)

【答案】1-;(2)見解析

【解析】

1)首先根據(jù)勾股定理求出正方形對角線的長度,即為OA的長,然后結(jié)合數(shù)軸的知識即可求解;

2)利用題中給出的方法畫圖,畫圖時即看是直角邊和斜邊分別多少,再從數(shù)軸上畫出來即可解決問題.

解:(1)∵12+12=2,

OA=,

A點(diǎn)表示的數(shù)是-;

2)如圖以數(shù)軸的單位長度為邊,作3×2的長方形,以數(shù)軸上的原點(diǎn)O為圓心,長方形的對角線的長為半徑作弧與數(shù)軸負(fù)半軸交于一點(diǎn)B,則點(diǎn)B表示的數(shù)就是-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

治理楊絮一一您選哪一項?(單選)

A.減少楊樹新增面積,控制楊樹每年的栽種量

B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹

C.選育無絮楊品種,并推廣種植

D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮

E.其他

根據(jù)以上統(tǒng)計圖,解答下列問題:

(1)本次接受調(diào)查的市民共有  人;

(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是   ;

(3)請補(bǔ)全條形統(tǒng)計圖;

(4)若該市約有90萬人,請估計贊同選育無絮楊品種,并推廣種植的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠A=60°,AB=6,△BCD為等邊三角形,點(diǎn)E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)EEMAB,交直線AC于點(diǎn)M,作ENAC,交直線AB于點(diǎn)N,則的最大值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:、是銳角的兩條高,、分別是、的中點(diǎn),若EF=6,.

1)證明:;

2)判斷的位置關(guān)系,并證明你的結(jié)論;

3)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A,∠B,∠C的對邊分別是a,b,c,則滿足下列條件的一定是直角三角形的是( 。

A. A:∠B:∠C345B. abc13

C. a7,b24,c25D. a32,b42,c52

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,把△ABC向上平移3個單位長度,再向右平移2個單位長度,得到△A′B′C′

⑴寫出A′、B′、C′的坐標(biāo);

⑵求出△ABC的面積;

⑶點(diǎn)Py軸上,且△BCP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸的交點(diǎn)分別為,直線軸于點(diǎn),兩條直線的交點(diǎn)為,點(diǎn)是線段上的一個動點(diǎn),過點(diǎn)軸,交軸于點(diǎn),連接.

的面積;

在線段上是否存在一點(diǎn),使四邊形為矩形,若存在,求出點(diǎn)坐標(biāo):若不存在,請說明理由;

若四邊形的面積為,設(shè)點(diǎn)的坐標(biāo)為,求出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心任意長為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

同步練習(xí)冊答案