【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).

(1)求證:四邊形EBFD是平行四邊形;

(2)若AD=AE=2,A=60°,求四邊形EBFD的周長.

【答案】(1)見解析28

【解析】

試題分析:1、在ABCD中,AB=CD,ABCD,又E、F分別是邊AB、CD的中點(diǎn),所以BE=CF,因此四邊形EBFD是平行四邊形

2、由AD=AE=2,A=60°知ADE是等邊三角形,又E、F分別是邊AB、CD的中點(diǎn),四邊形EBFD是平行四邊形,所以EB=BF=FD=DE=2,四邊形EBFD是平行四邊形的周長是2+2+2+2=8

解:(1)在ABCD中,

AB=CD,ABCD.

E、F分別是AB、CD的中點(diǎn),

BE=DF.

四邊形EBFD是平行四邊形

(2)AD=AE,A=60°,

∴△ADE是等邊三角形.

DE=AD=2,

BE=AE=2,

由(1)知四邊形EBFD是平行四邊形,

四邊形EBFD的周長=2(BE+DE)=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-1-2)關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上標(biāo)識(shí)4-3的兩個(gè)點(diǎn)之間的距離是( )

A. -1 B. 1 C. -7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣mx2+4x+2m與x軸交于點(diǎn)A(α,0),B(β,0),且=﹣2,

(1)求拋物線的解析式.

(2)拋物線的對(duì)稱軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為E,是否存在x軸上的點(diǎn)M,y軸上的點(diǎn)N,使四邊形DNME的周長最小?若存在,請(qǐng)畫出圖形(保留作圖痕跡),并求出周長的最小值;若不存在,請(qǐng)說明理由.

(3)若點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)以點(diǎn)D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種每件價(jià)格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a:b=4:3,且b2=ac,則b:c等于( 。

A. 2:3 B. 3:2 C. 4:3 D. 3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過點(diǎn)B和點(diǎn)D的兩個(gè)動(dòng)圓均與AC相切,且與AB、BC、AD、DC分別交于點(diǎn)G、H、E、F,則EF+GH的最小值是( )

A.6 B.8 C.9.6 D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖反映的是小剛從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買筆,然后走回家,其中x表示時(shí)間,y表示小剛離家的距離.根據(jù)圖象回答下列問題:

(1)體育場離小剛家      千米,小剛在體育場鍛煉了      分鐘.

(2)體育場離文具店      千米,小剛在文具店停留了      分鐘.

(3)小剛從家跑步到體育場、從體育場走到文具店、從文具店散步回家的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品每件標(biāo)價(jià)為150元,若按標(biāo)價(jià)打8折后,再降價(jià)10元銷售,仍獲利10%,則該商品每件的進(jìn)價(jià)為 元.

查看答案和解析>>

同步練習(xí)冊答案