【題目】如圖,已知將拋物線y=x2﹣1沿x軸向上翻折與所得拋物線圍成一個封閉區(qū)域(包括邊界),在這個區(qū)域內(nèi)有5個整點(點M滿足橫、縱坐標(biāo)都為整數(shù),則把點M叫做“整點”),它們分別是(1,0),(﹣1,0),(0,0),(0,1),(0,﹣1).現(xiàn)將拋物線y=a(x+1)2+2(a<0)沿x軸向下翻折,所得拋物線與原拋物線所圍成的封閉區(qū)域內(nèi)(包括邊界)恰有11個整點,則a的取值范圍是( 。
A.﹣1<a<﹣B.a<﹣1C.a<﹣D.﹣1≤a<﹣
【答案】D
【解析】
畫出圖象,利用圖象可得m的取值范圍.
解:∵y=a(x+1)2+2(a<0),
∴該拋物線開口向下,頂點坐標(biāo)為(﹣1,2),對稱軸是直線x=﹣1.
由此可知點(﹣1,2)、點(﹣1,1)、點(﹣1,0)、點(﹣1,﹣1)、點(﹣1,﹣2)符合題意,
此時x軸上的點 (﹣2,0)、(0,0)也符合題意.
將(0,1)代入y=a(x+1)2+2得到1=a+2.解得a=﹣1.
將(1,0)代入y=a(x+1)2+2得到0=4a+2.解得a=﹣.
∵有11個整點,
∴點(0,﹣1)、點(﹣2,﹣1)、點(﹣2,1)、點(0,1)也必須符合題意.
綜上可知:當(dāng)﹣1≤a<﹣時,點(﹣1,2)、點(﹣1,1)、點(﹣1,0)、點(﹣1,﹣1)、點(﹣1,﹣2)、點 (﹣2,0)、(0,0)、點(0,﹣1)、點(﹣2,﹣1)、點(﹣2,1)、點(0,1),共有11個整點符合題意,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線分別與,軸交于,兩點,點在線段上,拋物線經(jīng)過,兩點,且與軸交于另一點.
(1)求點的坐標(biāo)(用只含,的代數(shù)式表示);
(2)當(dāng)時,若點,均在拋物線上,且,求實數(shù)的取值范圍;
(3)當(dāng)時,函數(shù)有最小值,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線().
(1)寫出拋物線頂點的縱坐標(biāo) (用含a的代數(shù)式表示);
(2)若該拋物線與x軸的兩個交點分別為點A和點B,且點A在點B的左側(cè),AB=4.
①求a的值;
②記二次函數(shù)圖象在點A,B之間的部分為W(含點A和點B),若直線()經(jīng)過(1,-1),且與圖形W有公共點,結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個頂點均在格點上,點A、B的坐標(biāo)分別為(3,2)、(1,3).△AOB繞點O逆時針旋轉(zhuǎn)90后得到△A1OB1.
(1)在網(wǎng)格中畫出△A1OB1,并標(biāo)上字母;
(2)點A關(guān)于O點中心對稱的點的坐標(biāo)為 ;
(3)點A1的坐標(biāo)為 ;
(4)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為弧BB1,那么弧BB1的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1,平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為某濕地公園的一塊空地設(shè)計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負(fù)實數(shù)a的整數(shù)部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵樹種植點的坐標(biāo)應(yīng)為( )
A.(6,2020)B.(2019,5)C.(3,403)D.(404,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c的圖象經(jīng)過點C(0,﹣2),頂點D的坐標(biāo)為(1,﹣),與x軸交于A、B兩點.
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點,當(dāng)△AOC∽△AEB時,求點E的坐標(biāo)和的值.
(3)點C關(guān)于x軸的對稱點為H,當(dāng)FC+BF取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com