【題目】在⊙O中,AB是非直徑弦,弦CD⊥AB,
(1)當(dāng)CD經(jīng)過圓心時(如圖①),∠AOC+∠DOB=__________;
(2)當(dāng)CD不經(jīng)過圓心時(如圖②),∠AOC+∠DOB的度數(shù)與(1)的情況相同嗎?試說明你的理由.
【答案】(1)180°;(2)相同,見解析
【解析】
(1)根據(jù)垂徑定理得到∠AOD=∠DOB,從而得到∠AOC+∠DOB=180;
(2)根據(jù)圓周角定理得到∠AOC=2∠CBA,∠DOB=2∠BCD,根據(jù)垂直的定義得到∠CBA+∠BCD=90°,從而得到∠AOC+∠DOB=180.
(1)∵CD是直徑,弦CD⊥AB,
∴=,
∴∠AOD=∠DOB,
∴∠AOC+∠DOB=∠AOC+∠AOD =180;
(2)相同,
連接BC,
∵∠AOC=2∠ABC,∠DOB=2∠DCB,
∴∠AOC+∠DOB=2(∠CBA+∠BCD)
又∵AB⊥CD,
∴∠ABC+∠DCB=90°,
∴∠AOC+∠DOB=290°=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2分別是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段的兩個端點均在小正方形的頂點上.
(1)在圖1中畫出以為直角邊的直角,點在小正方形的頂點上,且;
(2)在圖2中畫出以為腰的鈍角等腰,點在小正方形的頂點上,且的面積為10.并直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:
例1 函數(shù)圖象求一元二次方程的近似解(精確到0.1).
解:設(shè)有二次函數(shù),列表并作出它的圖象(圖1).
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||
… | … |
觀察拋物線和軸交點的位置,估計出交點的橫坐標(biāo)分別約為和4.8,所以得出方程精確到0.1的近似解為,,利用二次函數(shù)的圖象求出一元二次方程的解的方法稱為圖象法,這種方法常用來求方程的近似解.
小聰和小明通過例題的學(xué)習(xí),體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試?yán)脠D象法探宄方程的近似解,做法如下:
小聰?shù)淖龇ǎ毫詈瘮?shù),列表并畫出函數(shù)的圖象,借助圖象得到方程的近似解.
小明的做法:因為,所以先將方程的兩邊同時除以,變形得到方程,再令函數(shù)和,列表并畫出這兩個函數(shù)的圖象,借助圖象得到方程的近似解.
請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時間,在本校隨機抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表.
組別 | 時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計 | 1 |
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補全;
(2)估計該校2000名學(xué)生中,每周課余閱讀時間不足0.5小時的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學(xué)生中隨機選出兩人向全校同學(xué)作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AD∥BC,∠C=90°,CD=6cm.動點Q從點B出發(fā),以1cm/S的速度沿BC運動到點C停止,同時,動點P也從B點出發(fā),沿折線B→A→D運動到點D停止,且PQ⊥BC.設(shè)運動時間為t(s),點P運動的路程為y(cm),在直角坐標(biāo)系中畫出y關(guān)于t的函數(shù)圖象為折線段OE和EF(如圖②).已知點M(4,5)在線段OE上,則圖①中AB的長是________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,以為直徑的交于點,點是邊上一點(點不與點,重合),的延長線交于點,,且交于點.
(1)求證:.
(2)連接,,求證:.
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種型號防護(hù)面罩,進(jìn)貨價為40元/個.經(jīng)市場銷售發(fā)現(xiàn):售價為50元/個時,每周可以售出100個,若每漲價1元,就會少售出5個.供貨廠家規(guī)定市場售價不得低于50元/個,且商場每周銷售數(shù)量不得少于80個.
(1)確定商場每周銷售這種型號防護(hù)面罩所得的利潤w(元)與售價x(元/個)之間的函數(shù)關(guān)系式.
(2)當(dāng)售價x(元/個)定為多少時,商場每周銷售這種防護(hù)面罩所得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的直角邊在軸上,,反比例函數(shù)的圖象與邊相交于點,與邊相交于點.
(1)求這個反比例函數(shù)的解析式;
(2)若點是的中點,.
①求的度數(shù);
②將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點為,直接寫出的坐標(biāo),并判斷點是否在此反比例函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com