【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長(zhǎng)是cm.

【答案】5
【解析】解:∵BP、CP分別是∠ABC和∠ACB的角平分線, ∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周長(zhǎng)=PD+DE+PE=BD+DE+EC=BC=5cm.
故答案為:5.
分別利用角平分線的性質(zhì)和平行線的判定,求得△DBP和△ECP為等腰三角形,由等腰三角形的性質(zhì)得BD=PD,CE=PE,那么△PDE的周長(zhǎng)就轉(zhuǎn)化為BC邊的長(zhǎng),即為5cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:2a2﹣8=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線yx2向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后,得到的拋物線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB,CD為直線,DF交AB于E,EG交CD于O.若∠BEF=124°,∠D=56°,∠DEO=60°,則∠C0E的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC=45°,ADE是等腰直角三角形,AE=AD,頂點(diǎn)A、D分別再ABC的兩邊BA、BC上滑動(dòng)(不與點(diǎn)B重合),ADE的外接圓交BC于點(diǎn)F,O為圓心.

(1)直接寫出AFE的度數(shù);

(2)當(dāng)點(diǎn)D在點(diǎn)F的右側(cè)時(shí),①求證:EF﹣DF=AF;

②若AB=,BE,求O的面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D為EC中點(diǎn).
(1)求∠CAE的度數(shù);
(2)求證:△ADE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)矩形ABCD及⊙M給出如下定義:在同一平面內(nèi),如果矩形ABCD的四個(gè)頂點(diǎn)到⊙M上一點(diǎn)的距離相等,那么稱這個(gè)矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標(biāo)系xOy中,直線l:交x軸于點(diǎn)M,⊙M的半徑為2,矩形ABCD沿直線運(yùn)動(dòng)(BD在直線l上),BD=2,AB∥y軸,當(dāng)矩形ABCD是⊙M的“伴侶矩形”時(shí),點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x24x的根是( 。

A.x0B.x4C.x±2D.x0x4

查看答案和解析>>

同步練習(xí)冊(cè)答案