【題目】一艘輪船向正東方向航行,在A處測(cè)得燈塔P在A的北偏東60°方向,航行40海里到達(dá)B處,此時(shí)測(cè)得燈塔P在B的北偏東15°方向.
(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號(hào))
(2)當(dāng)輪船從B處繼續(xù)向東航行時(shí),一艘快艇從燈塔P處同時(shí)前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達(dá)D處,求輪船每小時(shí)航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)
【答案】(1)燈塔P到輪船航線的距離PD是(10+10)海里;(2)輪船每小時(shí)約航行26海里.
【解析】
(1)過(guò)點(diǎn)B作BC⊥AP于點(diǎn)C,先求出BC、AC的長(zhǎng)度,然后確定∠CBP的度數(shù),繼而在直角三角形PAD中可求出根據(jù)PD.
(2)設(shè)輪船每小時(shí)航行x海里,在Rt△ADP中求出AD,繼而表示出BD,列出方程可解出x的值.
解:(1)過(guò)點(diǎn)B作BC⊥AP于點(diǎn)C.
在Rt△ABC中,∠ACB=90°,∠BAC=30°,
∴BC=AB=20海里,AC=AB·cos30°=20海里.
∵∠PBD=90°-15°=75°,∠ABC=90°-30°=60°,
∴∠CBP=180°-75°-60°=45°,
∴PC=BC=20海里,
∴AP=PC+AC=(20+20)海里.
∵PD⊥AD,∠PAD=30°,
∴PD=AP=(10+10)海里.
因此,燈塔P到輪船航線的距離PD是(10+10)海里.
(2)設(shè)輪船每小時(shí)航行x海里,
在Rt△ADP中,AD=AP·cos30°=× (20+20)=(30+10)(海里),
∴BD=AD-AB=30+10—40=(10-10)(海里),
由題意,得+=,
解得x=60-20,
經(jīng)檢驗(yàn)x=60-20是原方程的解,
∴x=60-20≈26.
因此,輪船每小時(shí)約航行26海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在工程實(shí)施過(guò)程中,某工程隊(duì)接受一項(xiàng)開(kāi)挖水渠的工程,所需天數(shù)y(天)與每天完成工程量x米的函數(shù)關(guān)系圖象如圖所示,是雙曲線的一部分.
(1)請(qǐng)根據(jù)題意,求y與x之間的函數(shù)表達(dá)式;
(2)若該工程隊(duì)有2臺(tái)挖掘機(jī),每臺(tái)挖掘機(jī)每天能夠開(kāi)挖水渠30米,問(wèn)該工程隊(duì)需要用多少天才能完成此項(xiàng)任務(wù)?
(3)如果為了防汛工作的緊急需要,必須在10天內(nèi)完成任務(wù),那么每天至少要完成多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E為邊CD延長(zhǎng)線上一點(diǎn),連接BE交邊AD于點(diǎn)F.請(qǐng)找出一對(duì)相似三角形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,給定銳角三角形ABC,小明希望畫(huà)正方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫(huà)圖比較困難,于是他先畫(huà)了一個(gè)正方形HIJK,使得點(diǎn)H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時(shí)他發(fā)現(xiàn)可以將正方形HIJK通過(guò)放大或縮小得到滿(mǎn)足要求的正方形DEFG.
閱讀以上材料,回答小明接下來(lái)研究的以下問(wèn)題:
(1)如圖2,給定銳角三角形ABC,畫(huà)出所有長(zhǎng)寬比為2:1的長(zhǎng)方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.
(2)已知三角形ABC的面積為36,BC=12,在第(1)問(wèn)的條件下,求長(zhǎng)方形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=. 求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角△ABC中,邊BC長(zhǎng)為12,高AD長(zhǎng)為8
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K
①求的值
②設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值
(2)若ABAC,正方形PQMN的兩個(gè)頂點(diǎn)在△ABC一邊上,另兩個(gè)頂點(diǎn)分別在△ABC的另兩邊上,直接寫(xiě)出正方形PQMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2-4x+3與x軸交于點(diǎn)A 、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的表達(dá)式;
(2)垂直于y軸的直線l與拋物線交于點(diǎn) ,與直線BC交于點(diǎn),若x1<x2<x3,結(jié)合函數(shù)的圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AC=2,斜邊AB=,延長(zhǎng)AB到點(diǎn)D,使BD=AB,連接CD,則tan∠BCD=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了“我最喜歡的課外活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果分為書(shū)法和繪畫(huà)類(lèi)記為A;音樂(lè)類(lèi)記為B;球類(lèi)記為C;其他類(lèi)記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了等級(jí)且只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類(lèi),并制作了如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(1)七年級(jí)(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計(jì)圖中D類(lèi)所對(duì)應(yīng)扇形的圓心角為_____度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)學(xué)校將舉行書(shū)法和繪畫(huà)比賽,每班需派兩名學(xué)生參加,A類(lèi)4名學(xué)生中有兩名學(xué)生擅長(zhǎng)書(shū)法,另兩名擅長(zhǎng)繪畫(huà).班主任現(xiàn)從A類(lèi)4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長(zhǎng)書(shū)法,另一名擅長(zhǎng)繪畫(huà)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com