【題目】綜合題
(1)感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG.
(2)探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
(3)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD的延長線上.若AE=3ED,∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
【答案】
(1)證明:∵四邊形ABCD、四邊形CEFG均為正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,
即∠BCE=∠DCG,
在△BCE和△DCG中,
,
∴△BCE≌△DCG,
∴BE=DG.
(2)∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,
∵∠A=∠F,
∴∠BCD=∠ECG,
∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,
即∠BCE=∠DCG,
∴△BCE≌△DCG.,
∴BE=DG.
(3)20
【解析】解:
應(yīng)用:∵四邊形ABCD是菱形,S△EBC=8,
∴S△AEB+S△EDC=8,
∵AE=3DE,
∴S△AEB=3S△EDC,
∴S△EDC=6,S△EDC=2,
∵△BCE≌△DCG,
∴S△DGC=S△EBC=8,
∴S△ECG=8+2=10,
∴菱形CEFG的面積=2S△EGC=20,
所以答案是20.
【考點(diǎn)精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具廠計(jì)劃加工3000套畫圖工具,為了盡快完成任務(wù),實(shí)際每天加工畫圖工具的數(shù)量是原計(jì)劃的1.2倍,結(jié)果提前4天完成任務(wù),求該文具廠原計(jì)劃每天加工這種畫圖工具的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,動點(diǎn)與同時從點(diǎn)出發(fā),運(yùn)動時間為秒,點(diǎn)沿方向以單位長度/秒的速度向點(diǎn)運(yùn)動,點(diǎn)沿折線運(yùn)動,在上運(yùn)動的速度分別為(單位長度/秒).當(dāng)中的一點(diǎn)到達(dá)點(diǎn)時,兩點(diǎn)同時停止運(yùn)動.
(1)求所在直線的函數(shù)表達(dá)式;
(2)如圖2,當(dāng)點(diǎn)在上運(yùn)動時,求的面積關(guān)于的函數(shù)表達(dá)式及的最大值;
(3)在,的運(yùn)動過程中,若線段的垂直平分線經(jīng)過四邊形的頂點(diǎn),求相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數(shù)關(guān)系的圖象,下列說法錯誤的是( 。
A. 乙先出發(fā)的時間為0.5小時 B. 甲的速度是80千米/小時
C. 甲出發(fā)0.5小時后兩車相遇 D. 甲到B地比乙到A地早小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻折,得到的△DBC與原△ABC拼成四邊形ABDC.求證:四邊形ABDC是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com