【題目】在平行四邊形ABCD中,E,F分別為邊AB,CD的中點,連接DE,BF,BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
【答案】(1)、證明過程見解析;(2)、菱形.
【解析】
試題分析:(1)、根據(jù)平行四邊形的性質(zhì)得到AD=BC,AB=CD,∠A=∠C,根據(jù)中點得到AE=CF,從而說明三角形全等;(2)、首先判斷BFDE為平行四邊形,根據(jù)直角三角形斜邊上的中線的性質(zhì)得到DE=BE,從而說明四邊形BFDE為菱形.
試題解析:(1)、∵四邊形ABCD為平行四邊形 ∴AD=BC AB=CD ∠A=∠C
∵E,F分別為AB,CD的中點 ∴AE=CF ∴△ADE≌△CBF
、∵ABCD為平行四邊形,E,F分別為AB,CD的中點 ∴DF=BE DF∥BE
∴四邊形BFDE為平行四邊形 ∵AD⊥BD ∴△ABD為直角三角形 DE為三角形斜邊上的中線
∴DE=BE ∴四邊形BFDE為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)﹣t3×(﹣t)4×(﹣t)5
(2)(3a3)3+a3×a6﹣3a9
(3)
(4)(p﹣q)4÷(q﹣p)3×(p﹣q)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點D,E,F(xiàn).
(1)求證:∠F+∠FEC=2∠A;
(2)過B點作BM∥AC交FD于點M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結(jié)論錯誤的是( )
A.全等三角形對應(yīng)邊上的中線相等
B.兩個直角三角形中,兩個銳角相等,則這兩個三角形全等
C.全等三角形對應(yīng)邊上的高相等
D.兩個直角三角形中,斜邊和一個銳角對應(yīng)相等,則這兩個三角形全等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時乘以2得:
2S=2+22+23+24+25+…+22013+22014,將下式減去上式得:
2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1
請你仿照此法計算1+3+32+33+34…+32014的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市今年預計建成34個地下調(diào)蓄設(shè)施,蓄水能力達到140000立方米,將140000用科學記數(shù)法表示應(yīng)為( )
A.14×104 B.1.4×105 C.1.4×106 D.0.14×106
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若2m-4與3m-1是同一個數(shù)的平方根,則這個數(shù)的值是( 。
A. 4或100 B. 100 C. 4 D. -3或1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此類推,則a2016的值為( )
A.﹣1007 B.﹣1008 C.﹣1009 D.﹣1010
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com