【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過的路徑長(zhǎng).
【答案】(1)①見解析;②12;(2)或3.
【解析】
試題分析:(1)①證明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長(zhǎng)度,再用平行線分線段成比例定理或者三角形相似定理求得的比值,即可以得到答案.
(2)當(dāng)點(diǎn)F靠近點(diǎn)C的時(shí)候點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時(shí)候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時(shí)△ABP為等腰三角形,繼而求得半徑和對(duì)應(yīng)的圓心角的度數(shù),求得答案.點(diǎn)F靠近點(diǎn)B時(shí),點(diǎn)P的路徑就是過點(diǎn)B向AC做的垂線段的長(zhǎng)度;
(1)①證明:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(SAS),
∴AF=BE,∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°﹣∠APE=120°.
②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,
∴,即,所以APAF=12
(2)若AF=BE,有AE=BF或AE=CF兩種情況.
①當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時(shí)候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時(shí)△ABP為等腰三角形,且∠ABP=∠BAP=30°,
∴∠AOB=120°,
又∵AB=6,
∴OA=,
點(diǎn)P的路徑是.
②當(dāng)AE=BF時(shí),點(diǎn)P的路徑就是過點(diǎn)C向AB作的垂線段的長(zhǎng)度;因?yàn)榈冗吶切蜛BC的邊長(zhǎng)為6,所以點(diǎn)P的路徑為:.
所以,點(diǎn)P經(jīng)過的路徑長(zhǎng)為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( ).
A.3x2+4x2=7x4 B.2x33x3=6x3
C.x6÷x3=x2 D.(x2)4=x8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種產(chǎn)品,每件產(chǎn)品的成本價(jià)、銷售價(jià)及月銷售量如表;為了獲取更大的利潤(rùn),公司決定投入一定的資金做促銷廣告,結(jié)果發(fā)現(xiàn):每月投入的廣告費(fèi)為x萬元,產(chǎn)品的月銷售量是原銷售量的y倍,且y與x的函數(shù)圖象為如圖所示的一段拋物線.
成本價(jià)(元/件) | 銷售價(jià)(元/件) | 銷售量(萬件/月) |
2 | 3 | 9 |
(1)求y與x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;
(2)已知利潤(rùn)等于銷售總額減去成本費(fèi)和廣告費(fèi),要使每月銷售利潤(rùn)最大,問公司應(yīng)投入多少廣告費(fèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式能用平方差公式計(jì)算的是( )
A. (2x+y)(2y+x) B. (x+1)(-x﹣1) C. (-x﹣y)(-x+y) D. (3x-y)(-3x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,D為AC邊上一點(diǎn),連接BD,AF⊥BD于點(diǎn)F,點(diǎn)E在BF上,連接AE,∠EAF=45°;
(1)如圖1,EM∥AB,分別交AF、AD于點(diǎn)Q、M,求證:FD=FQ;
(2)如圖2,連接CE,AK⊥CE于點(diǎn)K,交DE于點(diǎn)H,∠DEC=30°,HF=,求EC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com