【題目】如圖,直線l1∥l2 , 若∠1=140°,∠2=70°,則∠3的度數(shù)是( )
A.70°
B.80°
C.65°
D.60°
【答案】A
【解析】解:∵直線l1∥l2 , ∠1=140°, ∴∠1=∠4=140°,
∴∠5=180°﹣140°=40°,
∵∠2=70°,
∴∠6=180°﹣70°﹣40°=70°,
∵∠3=∠6,
故∠3的度數(shù)是70°.
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì)和三角形的外角,需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC向右平移3個(gè)單位長度,再向上平移2個(gè)單位長度,可以得到.
(1)畫出平移后的;
(2)寫出三個(gè)頂點(diǎn)的坐標(biāo);
(3)已知點(diǎn)P在x軸上,以、、P為頂點(diǎn)的三角形面積為4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的解題過程:
計(jì)算:5÷(-2-2)×6.
解:5÷(-2-2)×6
=5÷(-)×6…………①
=5÷(-25)…………②
=-.…………③
回答:(1)上面的解題過程是從第________步開始出現(xiàn)錯(cuò)誤的,錯(cuò)誤的原因是___________________________________________________;
(2)請(qǐng)你給出正確的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)﹣a2bc+cba2
(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab
(3)(﹣x+2x2+5)+(4x2﹣3﹣6x)
(4)(2x2﹣+3x)﹣4(x﹣x2+)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2a﹣12,1﹣a)位于第三象限,點(diǎn)Q(x,y)位于第二象限且是由點(diǎn)P向上平移一定單位長度得到的.
(1)若點(diǎn)P的縱坐標(biāo)為﹣3,試求出a的值;
(2)在(1)題的條件下,試求出符合條件的一個(gè)點(diǎn)Q的坐標(biāo);
(3)若點(diǎn)P的橫、縱坐標(biāo)都是整數(shù),試求出a的值以及線段PQ長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com