【題目】如圖,點(diǎn)N(0,6),點(diǎn)M在x軸負(fù)半軸上,ON=3OM.A為線段MN上一點(diǎn),AB⊥x軸,垂足為點(diǎn)B,AC⊥y軸,垂足為點(diǎn)C.
(1)寫出點(diǎn)M的坐標(biāo);
(2)求直線MN的表達(dá)式;
(3)若點(diǎn)A的橫坐標(biāo)為-1,求矩形ABOC的面積.
【答案】(1)(-2,0);(2)該y=3x+6;(3) S矩形ABOC=3.
【解析】
(1)由點(diǎn)N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出點(diǎn)M的坐標(biāo);
(2)設(shè)出直線MN的解析式為:y=kx+b,代入M、N兩點(diǎn)求得答案即可;
(3)將A點(diǎn)橫坐標(biāo)代入y=3x+6,求出縱坐標(biāo),即可表示出S矩形ABOC.
(1)∵N(0,6)
∴ON=6
∵ON=3OM
∴OM=2
∴M點(diǎn)坐標(biāo)為(-2,0);
(2)該直線MN的表達(dá)式為y=kx+b,分別把M(-2,0),N(0,6)代入,
得 解得
∴直線MN的表達(dá)式為y=3x+6.
(3)在y=3x+6中,當(dāng)x=-1時(shí),y=3,∴OB=1,AB=3,
∴S矩形ABOC=1×3=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是AB的中點(diǎn),連接CD,過B作BE⊥CD交CD的延長線于點(diǎn)E,連接AE,過A作AF⊥AE交CD于點(diǎn)F.
(1)求證:AE=AF;
(2)求證:CD=2BE+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:
(1)甲車的速度是 千米/時(shí),乙車的速度是 千米/時(shí);
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(3)甲車出發(fā)多長時(shí)間后兩車相距90千米?請(qǐng)你直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,則BC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)南充市創(chuàng)建“全國衛(wèi)生城市”的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計(jì)全校學(xué)生成績?yōu)锳等大約有900人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時(shí)間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】熱愛學(xué)習(xí)的小明同學(xué)在網(wǎng)上搜索到下面的文字材料:
在x軸上有兩個(gè)點(diǎn)它們的坐標(biāo)分別為和.則這兩個(gè)點(diǎn)所成的線段的長為;同樣,若在y軸上的兩點(diǎn)坐標(biāo)分別為(0,b)和(0,d),則這兩個(gè)點(diǎn)所成的線段的長為|b-d|.如圖1,在直角坐標(biāo)系中的任意兩點(diǎn)P1,P2,其坐標(biāo)分別為(a,b)和(c,d),分別過這兩個(gè)點(diǎn)作兩坐標(biāo)軸的平行線,構(gòu)成一個(gè)直角三角形,其中直角邊P1Q=|a-c|,P2Q=|b-d|,利用勾股定理可得,線段P1 P2的長為.
根據(jù)上面材料,回答下面的問題:
(1)在平面直角坐標(biāo)系中,已知,,則線段AB的長為_____;
(2)若點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)是,且,則點(diǎn)C的坐標(biāo)是_____;
(3)如圖2,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為和,點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),且A,B,C三點(diǎn)不在同一條直線上,求△ABC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com