【題目】在平面直角坐標系中B(3,2),BC⊥y軸于C,BA⊥x軸于A,點E在線段AB上從B向A以每秒1個單位的速度運動,運動時間為t秒(0<t<2).將BE沿BD折疊,使E點恰好落在BC上的F處.
(1)如圖1,若E為AB的中點,請直接寫出F、D兩點的坐標:F( , ) D( , )
(2)如圖1,連接CD,在(1)的條件下,求證:CD=FD.
(3)如圖2,在E點運動的同時,M點在OC上從C向O運動,N點在OA上從A向O運動,M的運動速度為每秒3個單位,N的運動速度為每秒a個單位.在運動過程中,△CMF能與△ANE全等嗎?若能,求出此時a與t的值,若不能,請說明理由.
【答案】
(1)2;2;1;0
(2)
解:如圖1,過點D作DG⊥BC于G,
由折疊得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中 ,
∴△AED≌△GFD,
∴GF=AE=1,
∵CF=2,
∴CG=1,
∴CG=FG,
∵DG⊥CG,
∴CD=FD
(3)
解:能全等,即:△CMF≌△AEN,
理由:
∵M點在OC上從C向O運動,N點在OA上從A向O運動,M的運動速度為每秒3個單位,N的運動速度為每秒a個單位,點E在線段AB上從B向A以每秒1個單位的速度運動,
∴CM=3t,AN=at,BE=t,
∴AE=2﹣t,
∵將BE沿BD折疊,使E點恰好落在BC上的F處,
∴BF=BE=t,
∴CF=BC﹣BF=3﹣t,
∵BF=BE,BC≠AB,
∴AE=CF,
∵△CMF與△ANE全等
∴△CMF≌△AEN,
∴CM=AE,CF=AN,
∴3t=2﹣t,3﹣t=at,
∴t= ,a=5.
【解析】解:(1)∵四邊形ABCD是矩形,且B(3,2),
∴OA=BC=3,OC=AB=2,
∵E為AB的中點,
∴AE=BE=1,
由折疊得,BF=BE=1,
∴CF=2,
∴F(2,2),
如圖1,
過點D作DG⊥BC于G,
由折疊得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中 ,
∴△AED≌△GFD,
∴AD=DG=OC=2,
∴OD=1,
∴D(1,0),
所以答案是:2,2,1,0;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF過矩形ABCD對角線的交點O , 且分別交AB、CD于E、F , 那么陰影部分的面積與矩形ABCD面積的大小關系是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=,求點B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中不能判定四邊形是矩形的是( )
A. 四個角都相等的四邊形 B. 有一個角為90°的平行四邊形
C. 對角線相等的平行四邊形 D. 對角線互相平分的四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(2﹣π)0+( )﹣2+(﹣2)3
(2)0.5200×(﹣2)202
(3)(﹣2x3)2(﹣x2)÷[(﹣x)2]3
(4)(3x﹣1)(x+1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校一課外活動小組為了解學生最喜歡的球類運動情況,隨機抽查本校九年級的200名學生,調查的結果如圖所示.請根據(jù)該扇形統(tǒng)計圖解答以下問題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運動的學生人數(shù);
(3)若由3名最喜歡籃球運動的學生,1名最喜歡乒乓球運動的學生,1名最喜歡足球運動的學生組隊外出參加一次聯(lián)誼活動.欲從中選出2人擔任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形ABC的底邊長BC=20cm,D是AC上的一點,且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com