【題目】如圖,已知正方形ABCD的邊長為4,E是BC的中點,過點E作EF⊥AE,交CD于點F,連接AF并延長,交BC的延長線于點G.則CG的長為( )
A.
B.1
C.
D.2
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC,∠B=∠BCD=∠BCD=90°,
∵正方形ABCD的邊長為4,E是BC的中點,
∴AB=BC=4,BE=CE=2,
∵EF⊥AE,
∴∠BAE=∠CEF,
∴△ABE∽△CEF,
∴ = = ,
∴CF=1,
∵CD∥AB,
∴△GCF∽△GBA,
∴ ,即 ,
∴CG= .
故選C.
【考點精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點坐標,與y軸交點坐標;
(3)畫出這條拋物線;
(4)根據(jù)圖象回答:①當x取什么值時,y>0,y<0?②當x取什么值時,y的值隨x的增大而減?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察、猜想、探究:
在△ABC中,.
(1)如圖①,當,AD為∠BAC的角平分線時,求證:;
(2)如圖②,當,AD為∠BAC的角平分線時,線段AB、AC、CD又有怎樣的
數(shù)量關(guān)系?請寫出你的猜想,并對你的猜想給予證明;
(3)如圖③,當AD為△ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面內(nèi),△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉(zhuǎn)180°得到△CEA,將△ABD繞著邊AD的中點旋轉(zhuǎn)180°得到△DFA,如圖②,請完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察一組數(shù)據(jù):2,4,7,11,16,22,29,…,它們有一定的規(guī)律,若記第一個數(shù)為a1,第二個數(shù)記為a2,…,第n個數(shù)記為an.
(1)請寫出29后面的第一個數(shù);
(2)通過計算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律求a100的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過點(-1,2).
(1)求此正比例函數(shù)的表達式;
(2)畫出這個函數(shù)圖象;
(3)點(2,-5)是否在此函數(shù)圖象上?
(4)若這個圖象還經(jīng)過點A(a,8),求點A的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤A被分成三個面積相等的扇形,轉(zhuǎn)盤B被分成兩個面積相等的扇形.
(1)轉(zhuǎn)動轉(zhuǎn)盤A一次,所得到的數(shù)字是負數(shù)的概率為
(2)轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,請用列表法或畫樹狀圖法求所得到的數(shù)字均是負數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻后放在桌面上.
(1)小紅從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明從這四張紙牌中隨機摸出兩張,用樹狀圖或表格法,求摸出的兩張牌面圖形都是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com