在y=,y=-,y=+1及y=(a≠-1)四個函數(shù)中,為反比例函數(shù)的是________.

答案:
解析:

y=,y=(a≠-1)


練習冊系列答案
相關習題

科目:初中數(shù)學 來源:湖北省鄂州市2011年中考數(shù)學試題 題型:解答題

數(shù)學課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn   °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣西區(qū)北海卷)數(shù)學 題型:解答題

(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過
點D作EF⊥AC于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)當∠BAC=60º時,DE與DF有何數(shù)量關系?請說明理由;
(3)當AB=5,BC=6時,求tan∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆山東省濟南市長清區(qū)九年級學業(yè)水平模擬考試數(shù)學試卷(帶解析) 題型:解答題

(1)如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在線段BC上,且AE=CF.求證:∠AEB=∠CFB.

(2)如圖,PA為⊙O的切線,A為切點,⊙O的割線PBC過點O與⊙O分別交于B、C, PA=8cm,PB=4cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東泰安卷)數(shù)學解析版 題型:解答題

數(shù)學課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點BC)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學 來源:北京同步題 題型:填空題

在解直角三角形的過程中,一般要用的主要關系如下(如圖所示):在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c,第1題圖
①三邊之間的等量關系:(    );
②兩銳角之間的關系:(    );
③邊與角之間的關系:
=(    )        (    )
(    )     (    )
④直角三角形中成比例的線段(如圖所示)。
在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=(    );
AC2=(    );BC2=(    );AC·BC=(    )。
⑤直角三角形的主要線段(如圖所示)。
直角三角形斜邊上的中線等于斜邊的(    ),斜邊的中點是(    )。若r是Rt△ABC(∠C=90°)的內(nèi)切圓半徑,則r=(    )=(    )。
⑥直角三角形的面積公式.在Rt△ABC中,∠C=90°,S△ABC=(    )。(答案不唯一)

         第1題圖                                            第④小題圖                  第⑤小題圖

查看答案和解析>>

同步練習冊答案