【題目】如圖,在ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過(guò)點(diǎn)O的直線與BA的延長(zhǎng)線,DC的延長(zhǎng)線分別交于點(diǎn)E,F.
(1)求證:△AOE≌△COF.
(2)連接EC,AF,則EF與AC滿足什么數(shù)量關(guān)系時(shí),四邊形AECF是矩形?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析 (2)答案見(jiàn)解析
【解析】
(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可;
(2)連接EC、AF,則EF與AC滿足EF=AC時(shí),四邊形AECF是矩形,首先證明四邊形AECF是平行四邊形,再根據(jù)對(duì)角線相等的平行四邊形為矩形即可證明.
(1)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,AB∥CD,
∴∠AEO=∠CFO.
在△AOE和△COF中,
∴△AOE≌△COF(AAS).
(2)解:當(dāng)AC=EF時(shí),四邊形AECF是矩形.
理由如下:
由(1)知△AOE≌△COF,∴OE=OF.
∵AO=CO,
∴四邊形AECF是平行四邊形.
又∵AC=EF,∴四邊形AECF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,設(shè)c為最長(zhǎng)邊,當(dāng)a2+b2=c2時(shí),△ABC是直角三角形;當(dāng)a2+b2≠c2時(shí),利用代數(shù)式a2+b2和c2的大小關(guān)系,探究△ABC的形狀(按角分類).
(1)當(dāng)△ABC三邊分別為6、8、9時(shí),△ABC為 三角形;當(dāng)△ABC三邊分別為6、8、11時(shí),△ABC為 三角形.
(2)猜想,當(dāng)a2+b2 c2時(shí),△ABC為銳角三角形;當(dāng)a2+b2 c2時(shí),△ABC為鈍角三角形.
(3)判斷當(dāng)a=2,b=4時(shí),△ABC的形狀,并求出對(duì)應(yīng)的c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店用4400元購(gòu)進(jìn)A,B兩種新式服裝,按標(biāo)價(jià)售出后可獲得毛利潤(rùn)2800元(毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià)),這兩種服裝的進(jìn)價(jià),標(biāo)價(jià)如表所示.
類型價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/件) | 60 | 100 |
標(biāo)價(jià)(元/件) | 100 | 160 |
(1)請(qǐng)利用二元一次方程組求這兩種服裝各購(gòu)進(jìn)的件數(shù);
(2)如果A種服裝按標(biāo)價(jià)的9折出售,B種服裝按標(biāo)價(jià)的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價(jià)出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見(jiàn)下表:
海拔高度(單位:米) | 0 | 100 | 200 | 300 | 400 | … |
平均氣溫(單位:℃) | 22 | 21.5 | 21 | 20.5 | 20 | … |
(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長(zhǎng)在18℃~20℃(包含18℃,也包含20℃)山區(qū),請(qǐng)問(wèn)該植物適宜種植在海拔為多少米的山區(qū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求該拋物線與x軸公共點(diǎn)的坐標(biāo);
(Ⅱ)若a=b=1,且當(dāng)﹣1<x<1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍;
(Ⅲ)若a+b+c=0,且x1=0時(shí),對(duì)應(yīng)的y1>0;x2=1時(shí),對(duì)應(yīng)的y2>0,試判斷當(dāng)0<x<1時(shí),拋物線與x軸是否有公共點(diǎn)?若有,請(qǐng)證明你的結(jié)論;若沒(méi)有,闡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),且b=.
(1)直接寫(xiě)出點(diǎn)A、B、C的坐標(biāo);
(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;
(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車.經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買6輛男式單車與8輛女式單車費(fèi)用相同,購(gòu)買5輛男式單車與4輛女式單車共需16 000元.
(1)求男式單車和女式單車的單價(jià);
(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過(guò)50 000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,MN是⊙O的切線,B為切點(diǎn),BC是⊙O的弦且∠CBN=45°,過(guò)C的直線與⊙O,MN分別交于A,D兩點(diǎn),過(guò)C作CE⊥BD于點(diǎn)E.、
(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com