【題目】如圖,在中,,,如圖:(1)以為圓心,任意長為半徑畫弧分別交、于點;(2)分別以、為圓心,大于的長為半徑畫弧,兩弧交于點;(3)連結(jié)并延長交于點.根據(jù)以上作圖過程,下列結(jié)論中錯誤的是(

A.的平分線B.

C.的中垂線上D.

【答案】D

【解析】

根據(jù)作圖的過程可以判定AD是∠BAC的角平分線;利用角平分線的定義可以推知∠CAD=30°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);利用等角對等邊可以證得△ADB的等腰三角形,由等腰三角形的三線合一的性質(zhì)可以證明點DAB的中垂線上;利用30度角所對的直角邊是斜邊的一半、三角形的面積計算公式來求兩個三角形的面積之比.

解:A、根據(jù)作圖方法可得AD是∠BAC的平分線,正確;
B、∵∠C=90°,∠B=30°
∴∠CAB=60°,
AD是∠BAC的平分線,
∴∠DAC=DAB=30°,
∴∠ADC=60°,正確;
C、∵∠B=30°,∠DAB=30°,
AD=DB,
∴點DAB的中垂線上,正確;
D、∵∠CAD=30°,
CD=AD,
AD=DB,
CD=DB,
CD=CB,
SACD=CDACSACB=CBAC,
SACDSACB=13
SDACSABD≠13,錯誤,
故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的內(nèi)心,過點于點,交于點,若,,,則的長為(

A.35B.4C.5D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BCCD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準備購進一批電冰箱和空調(diào),每臺電冰箱的進價比每臺空調(diào)的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調(diào)的數(shù)量相等.

(1)求每臺電冰箱與空調(diào)的進價分別是多少?

(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33x40),那么該商店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20208月高郵高鐵將通車,高郵至北京的路程約為900km,甲、乙兩人從高郵出發(fā),分別乘坐汽車A與高鐵B前往北京.已知A車的平均速度比B車的平均速度慢150km/h,A車的行駛時間是B車的行駛時間的2.5倍,兩車的行駛時間分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABD中,∠ABD = ADB,分別以點B,D為圓心,AB長為半徑在BD的右側(cè)作弧,兩弧交于點C,連接BC,DCAC,ACBD交于點O

1)用尺規(guī)補全圖形,并證明四邊形ABCD為菱形;

2)如果AB = 5,,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年全球超級計算機500強名單公布,中國超級計算機“神威·太湖之光”和“天河二號”攜手奪得前兩名.已知“神威·太湖之光”的浮點運算速度是“天河二號”的2.74倍.這兩種超級計算機分別進行100億億次浮點運算“神威·太湖之光”的運算時間比“天河二號”少18.75秒,求這兩種超級計算機的浮點運算速度.設(shè)“天河二號”的浮點運算速度為億億次/秒,依題意,可列方程為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,過點的切線,點上一點,連接交于點,上一點,且滿足=,連接

1)求證:

2)過點的垂線,垂足為,若,求的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC的垂直平分線EFAD、AC、BC分別交于點E、O、F

1)求證:四邊形AFCE是菱形;

2)若AB5,BC12,求菱形AFCE的面積.

查看答案和解析>>

同步練習冊答案