【題目】如圖,10個(gè)不同的正偶數(shù)按下圖排列,箭頭上方的每個(gè)數(shù)都等于其下方兩數(shù)的和,如, 表示a1=a2+a3,則a1的最小值為( )
A.32 B.36 C.38 D.40
【答案】D.
【解析】
試題分析:由a1=a7+3(a8+a9)+a10知要使a1取得最小值,則a8+a9應(yīng)盡可能的小,取a8=2、a9=4,根據(jù)a5=a8+a9=6,則a7、a10中不能有6,據(jù)此對(duì)于a7、a8,分別取8、10、12檢驗(yàn)可得.
∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,
∴要使a1取得最小值,則a8+a9應(yīng)盡可能的小,取a8=2、a9=4,∵a5=a8+a9=6,則a7、a10中不能有6,
若a7=8、a10=10,則a4=10=a10,不符合題意,舍去;若a7=10、a10=8,則a4=12、a6=4+8=12,不符合題意,舍去;若a7=10、a10=12,則a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合題意;
綜上,a1的最小值為40,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),,且與軸交于點(diǎn),連接、、.
(1)求此二次函數(shù)的關(guān)系式;
(2)判斷的形狀;若的外接圓記為,請(qǐng)直接寫(xiě)出圓心的坐標(biāo);
(3)若將拋物線沿射線方向平移,平移后點(diǎn)、、的對(duì)應(yīng)點(diǎn)分別記為點(diǎn)、、,的外接圓記為,是否存在某個(gè)位置,使經(jīng)過(guò)原點(diǎn)?若存在,求出此時(shí)拋物線的關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市首批一次性投放公共自行車700輛供市民租用出行,由于投入數(shù)量不夠, 導(dǎo)致出現(xiàn)需要租用卻未租到車的現(xiàn)象,現(xiàn)隨機(jī)抽取的某五天在同一時(shí)段的調(diào)查數(shù)據(jù)匯成如下表格.
請(qǐng)回答下列問(wèn)題:
時(shí)間 | 第一天7:00﹣8:00 | 第二天7:00﹣8:00 | 第三天7:00﹣8:00 | 第四天7:00﹣8:00 | 第五天7:00﹣8:00 |
需要租用自行車卻未租到車的人數(shù)(人) | 1500 | 1200 | 1300 | 1300 | 1200 |
(1)表格中的五個(gè)數(shù)據(jù)(人數(shù))的中位數(shù)是多少?
(2)由隨機(jī)抽樣估計(jì),平均每天在7:00-8:00 :需要租用公共自行車的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“和諧號(hào)”火車從車站出發(fā),在行駛過(guò)程中速度 (單位:)與時(shí)間 (單位:)的關(guān)系如圖所示,其中線段軸.
(1)當(dāng),求關(guān)于的函數(shù)解析式;
(2)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一等腰三角形兩邊長(zhǎng)分別為3,4.則這個(gè)等腰三角形的周長(zhǎng)為( 。
A. 7 B. 11 C. 7或10 D. 10或11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若現(xiàn)有長(zhǎng)為3cm,4cm,7cm,9cm的四根木棒,任取其中三根組成一個(gè)三角形,則可以組成不同的三角形的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,∠COD=90°,直線AB與OC交于點(diǎn)B,與OD交于點(diǎn)A,射線OE和射線AF交于點(diǎn)G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,則∠OGA= .
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,則∠OGA= .
(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則∠OGA= (用含α的代數(shù)式表示)
(4)若OE將∠BOA分成1:2兩部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度數(shù)(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中:①對(duì)頂角相等;②同旁內(nèi)角互補(bǔ);③全等三角形的對(duì)應(yīng)角相等;④兩直線平行,同位角相等,其中假命題的有(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com