精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在邊長為2的正三角形ABC中,已知點P是三角形內任意一點,則點P到三角形三邊距離之和PD+PE+PF的值是______

【答案】

【解析】

連接AP、BP、CP,過點AAH⊥BC于點H,先利用勾股定理求得AH的長,再分別求出△APC、△APB、△BPC的面積,而三個三角形的面積之和等于△ABC面積,由此等量關系可求出到三角形的三邊距離之和PD+PE+PF等于△ABC的高AH,進而可得答案.

解:如圖,連接AP、BPCP,過點AAH⊥BC于點H,

∵正三角形ABC邊長為2,AH⊥BC,

BH=CH=1,

AH,

SBPC,

SAPC,

SAPB,

SABC,

ABBCAC,

SABC,

PD+PF+PEAH

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,對于給定的兩點,,若存在點,使得的面積等于1,即,則稱點為線段的“單位面積點”.

解答下列問題:

如圖,在平面直角坐標系中,點的坐標為.

1)在點,,,中,線段的“單位面積點”是______.

2)已知點,,點,是線段的兩個“單位面積點”,點的延長線上,若,直接寫出點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應的任務.

課題學習:如何解一元二次不等式?

例題:解一元二次不等式

解:

由有理數的乘法法則兩數相乘,同號得正,有:

解不等式組:

解不等式組:

的解集為

:一元二次不等式的解集為

任務:(1)上面解一元二次不等式的過程中體現出了數學的一些基本思想方法,請在下列選項中選出你認為正確的一項:_____ ;(填選項即可)

A.分類討論思想;B.數形結合思想;C.公理化思想;D.函數思想

2)求一元二次不等式的解集為:_____ (直接填寫結果,不寫解答過程)

3)仿照例題中的數學思想方法,求分式不等式的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O,有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BCE、F兩點,連接EFOB于點G,則下列結論中正確的是________

1EF=OE;(2S四邊形OEBFS正方形ABCD=14;(3BE+BF= OA;(4在旋轉過程中,當BEFCOF的面積之和最大時,AE=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小米手機越來越受到大眾的喜愛,各種款式相繼投放市場,某店經營的A款手機去年銷售總額為50000元,今年每部銷售價比去年降低400元,若賣出的數量相同,銷售總額將比去年減少

A,B兩款手機的進貨和銷售價格如下表:

A款手機

B款手機

進貨價格

1100

1400

銷售價格

今年的銷售價格

2000

1)今年A款手機每部售價多少元?

2)該店計劃新進一批A款手機和B款手機共60部,且B款手機的進貨數量不超過A款手機數量的兩倍,應如何進貨才能使這批手機獲利最多?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖(1),將一個長為4a,寬為2b的長方形,沿圖中虛線均勻分成4個小長方形,然后按圖(2)形狀拼成一個正方形.

①圖(2)中的空白部分的邊長是多少?(用含a,b的式子表示)

②觀察圖(2),用等式表示出,ab和的數量關系;

2)如圖所示,在△ABC與△DCB中,AC與BD相交于點E,且∠A=∠D,AB=DC.求證:△ABE≌△DCE;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在建立平面直角坐標系的網格紙中,每個小方格都是邊長為1個單位長度的小正方形,△ABC的頂點均在格點上,點P的坐標為(-1,0).

1)把△ABC繞點P旋轉180°得到A’B’C’,作出A’B’C’;

2)把△ABC向右平移7個單位長度得到△ABC″,作出△ABC″;

3△A’B’C’與△ABC″是否成中心對稱?若是,則找出對稱中心P’,并寫出其坐標;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結果為6x2+11x10;乙由于漏抄了第二個多項式中x的系數,得到的結果為2x29x+10

(1)a、b的值.

(2)計算這道乘法題的正確結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點O,點E,F分別為OB,OD的中點延長AEG,使EG=AE,連接CG

1)求證:ABECDF

2)當AB=AC時,判斷四邊形EGCF是什么形狀?請說明理由.

查看答案和解析>>

同步練習冊答案