【題目】拋物線表達(dá)式C, 已知點A(0,2),點P是拋物線上一點,若RtAOP有一個銳角正切值為,則點P的坐標(biāo)_________________

【答案】(-1,0)或(4,0)或(-4,2

【解析】

由題意可知RtAOP中,分類討論∠AOP=90°或∠PAO=90°,根據(jù)已知條件,P的橫坐標(biāo)可以是±1或±4,然后將P點坐標(biāo)代入解析式中即可求得.

解:由題意可知RtAOP中,∠AOP=90°或∠PAO=90°

∵拋物線,

∴拋物線開口向上,與x軸的交點為(-10)和(4,0),

當(dāng)∠AOP=90°時,P點可能是(-1,0)或(40),

OP=14

OA=2,且RtAOP有一個銳角正切值為

OP=14

P點是(-1,0)或(4,0),

當(dāng)∠OAP=90°時,P點縱坐標(biāo)與A點縱坐標(biāo)一樣,把y=2代入,解得x=-47,

OA=2,且RtAOP有一個銳角正切值為,

AP=14

當(dāng)AP=1時代入檢驗不滿足一個銳角正切值為

P點是(-4,2),

故答案為(-10)或(4,0)或(-4,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是3,點AB、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是矩形AOBC的對稱中心,A(0,4),B60),若一個反比例函數(shù)的圖象經(jīng)過點D,交AC于點M,則點M的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C、點D為⊙O上異于A、B的兩點,連接CD,過點CCEDB,交DB的延長線于點E,連接AC、AD、BC,若∠ABD=2BDC

1)求證:CE是⊙0的切線

2)求證:△ABCCBE

3)若⊙O的半徑為5,tanBDC=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個服裝廠加工同種型號的防護(hù)服,甲廠每天加工的數(shù)量是乙廠每天加工數(shù)量的1.5倍,兩廠各加工450套防護(hù)服,甲廠比乙廠要少用3天.

1)求甲、乙兩廠每天各加工多少套防護(hù)服?

2)已知甲、乙兩廠加工這種防護(hù)服每天的費用分別是180元和160元,疫情期間,某醫(yī)院緊急需要2400套這種防護(hù)服,甲廠單獨加工一段時間后另有安排,剩下任務(wù)只能由乙單獨完成.如果總加工費不超過6000元,那么甲廠至少要加工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形.若顯示屏AO與鍵盤BO長均為24cm,點P為眼睛所在位置,DAO的中點,連接PD,且PDAO(此時點P為最佳視角),點COB的延長線上,PCBC,BC12cm.

1)當(dāng)PA45cm時,求PC的長;

2)當(dāng)∠AOC115°時,線段PC的長比(1)中線段PC的長是增大還是減。空埻ㄟ^計算說明.(結(jié)果精確到0.1cm,sin65°≈0.91,cos65°≈0.42tan65°≈2.14,sin25°≈0.42cos25°≈0.91,tan25°≈0.47).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接十二運,某校開設(shè)了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).

1)這次調(diào)查中,一共查了   名學(xué)生:

2)請補(bǔ)全兩幅統(tǒng)計圖:

3)若有3名最喜歡毽球運動的學(xué)生,1名最喜歡跳繩運動的學(xué)生組隊外出參加一次聯(lián)誼互活動,欲從中選出2人擔(dān)任組長(不分正副),求兩人均是最喜歡毽球運動的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線

(1)當(dāng)m=3時,求拋物線的頂點坐標(biāo);

(2)已知點A(1,2).試說明拋物線總經(jīng)過點A;

(3)已知點B(02),將點B向右平移3個單位長度,得到點C,若拋物線與線段BC只有一個公共點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點A,與y軸交于B點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,在第一象限的拋物線上取一點D,過點DDCx軸于點C,交直線AB于點E

1)求拋物線的函數(shù)表達(dá)式

2)是否存在點D,使得BDEACE相似?若存在,請求出點D的坐標(biāo),若不存在,請說明理由;

3)如圖2,F是第一象限內(nèi)拋物線上的動點(不與點D重合),點G是線段AB上的動點.連接DF,FG,當(dāng)四邊形DEGF是平行四邊形且周長最大時,請直接寫出點G的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案