【題目】已知拋物線,通過畫圖發(fā)現(xiàn),無論b取何值,拋物線總會(huì)經(jīng)過兩個(gè)定點(diǎn);
(1)直接寫出這兩個(gè)定點(diǎn)的坐標(biāo)________ ,_________;
(2)若將此拋物線向右平移單位,再向上平移(b>0)個(gè)單位,平移后的拋物線頂點(diǎn)都在某個(gè)函數(shù)的圖象上,求這個(gè)新函數(shù)的解析式(不必寫自變量取值范圍);
(3)若拋物線與直線y=x–3有兩個(gè)交點(diǎn)A與B,且,求b的取值范圍.
【答案】(1)(0,-3),(-1,0);(2);(3)或
【解析】
(1)y=bx2+(b3)x3=b(x2+x)3x3,函數(shù)過定點(diǎn),則x2+x=0,即可求解;
(2)原拋物線頂點(diǎn)坐標(biāo)為(,),平移后為(,),即可求解;
(3)根據(jù)題意分b>0和b<0,根據(jù)AB的長分別求出B點(diǎn)坐標(biāo),代入求出相應(yīng)b的取值即可求解.
解:(1)y=bx2+(b3)x3=b(x2+x)3x3,
函數(shù)過定點(diǎn),則x2+x=0,
解得x=0或x=1,
∴拋物線總會(huì)經(jīng)過兩個(gè)定點(diǎn)(0,3)、(1,0),
故答案為(0,3)、(1,0);
(2)原拋物線頂點(diǎn)橫坐標(biāo)為:,
縱坐標(biāo)為:,
即(,),
平移后新拋物線頂點(diǎn)橫坐標(biāo)為:,縱坐標(biāo)為:,即(,)
∴
∴
即為平移后的拋物線頂點(diǎn)所在的函數(shù)解析式為:;
(3)由與直線y=x–3交于點(diǎn)A(0,-3)
當(dāng)b>0時(shí),如圖當(dāng)AB=時(shí),
過點(diǎn)A作AM∥x軸,BM∥y軸交于點(diǎn)M
∵AM⊥BM,∠BAM=45°,AB=
∴MA=MB=ABsin45°=1,
∴B(1,-2)
把B(1,-2)代入y=bx2+(b–3)x–3
得b=2.
AB=時(shí),作BM⊥x軸交于點(diǎn)M
同理得AM=BM=4
∴B(4,1)
把B(4,1)代入y=bx2+(b–3)x–3 得b=,
.
當(dāng)時(shí),,同理可得,
代入,x無解;
當(dāng),同理可得B(-4,-7)
代入解得
∴,
綜上,b的取值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:
若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如:點(diǎn)(1,2)的“可控變點(diǎn)”為點(diǎn)(1,2),點(diǎn)(﹣1,3)的“可控變點(diǎn)”為點(diǎn)(﹣1,﹣3).
(1)點(diǎn)(﹣5,﹣2)的“可控變點(diǎn)”坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′是7,求“可控變點(diǎn)”Q的橫坐標(biāo);
(3)若點(diǎn)P在函數(shù)()的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′ 的取值范圍是,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】攀枝花得天獨(dú)厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷北上廣等大城市.某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價(jià)為10元/千克,售價(jià)不低于15元/千克,且不超過40元/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(jià)(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.
銷售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售價(jià)(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價(jià)為28元/千克.求當(dāng)天該芒果的銷售量
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價(jià)之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)拓展課研究小組經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)某種衣服的銷量與售價(jià)是一次函數(shù)關(guān)系,具體信息如下表:
售價(jià)(元/件) | 200 | 210 | 220 | 230 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件160元,售價(jià)為x元,月銷量為y件.
(1)求出y關(guān)于x的函數(shù)關(guān)系式;
(2)若銷售該運(yùn)動(dòng)服的月利潤為w元,求出w關(guān)于x的函數(shù)關(guān)系式,并求出月利潤最大時(shí)的售價(jià);
(3)由于運(yùn)動(dòng)服進(jìn)價(jià)降低了a元,商家決定回饋顧客,打折銷售,結(jié)果發(fā)現(xiàn),此時(shí)月利潤最大時(shí)的售價(jià)比調(diào)整前月利潤最大時(shí)的售價(jià)低10元,則a的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B(5,2),⊙P經(jīng)過原點(diǎn)O,交y軸正半軸于點(diǎn)A,點(diǎn)B在⊙P上,∠BAO=45°,圓心P的坐標(biāo)為____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)O作OD⊥AB,交BC的延長線于D,交AC于點(diǎn)E,F是DE的中點(diǎn),連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:AC=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(﹣1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為( )
A.﹣1B.C.﹣2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠EDF的頂點(diǎn)D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點(diǎn)M,DF交BC所在直線于點(diǎn)N,設(shè)AM=x,BN=y,記△ADM的面積為S1,△BND的面積為S2.
(1)如圖(1),當(dāng)△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時(shí),S1S2= ;
(2)在(1)的條件下,將點(diǎn)D沿AB平移,使AD=4,再將∠EDF繞點(diǎn)D旋轉(zhuǎn)如圖(2)所示位置,
①求y與x的函數(shù)關(guān)系式;②求S1S2的值;
(3)當(dāng)△ABC是等腰三角形時(shí),設(shè)∠B=∠A=∠EDF=α,如圖(3),當(dāng)點(diǎn)D在BA的延長線上運(yùn)動(dòng)時(shí),設(shè)的AD=a,BD=b,直接寫出S1S2的關(guān)系式(用含a、b和α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點(diǎn) Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫出一個(gè)滿足條件的點(diǎn) B的坐標(biāo);②直接寫出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com