【題目】完成下面的解題過(guò)程(在下面的橫線上,填寫相應(yīng)的結(jié)論或推理的依據(jù)):
已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:過(guò)C作CD//AB,并延長(zhǎng)BC到E
∵CD//________(已作)
∴∠________=∠ACD(兩直線平行,內(nèi)錯(cuò)角相等)
且∠B=∠___________(________________)
而∠DCE+∠ACD+∠ACB=_________°
∴∠________+∠B+∠ACB=180°(__________)
【答案】AB;A;DCE,兩直線平行,同位角相等;180;A;等量代換.
【解析】
依據(jù)平行線的性質(zhì)∠A=∠ACD,∠B=∠DCE,再根據(jù)平角為180°,即可得到∠A+∠B+∠ACB=180°.
解:∠A+∠B+∠C=180°
理由:過(guò)C作CD∥AB,并延長(zhǎng)BC到E
∵CD∥AB(已作)
∴∠A=∠ACD(兩直線平行,內(nèi)錯(cuò)角相等)
且∠B=∠DCE(兩直線平行,同位角相等)
而∠DCE+∠ACD+∠ACB=180°
∴∠A+∠B+∠ACB=180°(等量代換)
故答案為:AB;A;DCE,兩直線平行,同位角相等;180;A;等量代換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).下表是該市居民戶一表生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息:
自來(lái)水銷售價(jià)格 | 污水處理價(jià)格 | |
每戶每月用水量 | 單價(jià):元/噸 | 單價(jià):元/噸 |
噸及以下 | ||
超過(guò) 17 噸但不超過(guò) 30 噸的部分 | ||
超過(guò) 30 噸的部分 |
說(shuō)明:①每戶產(chǎn)生的污水量等于該戶自來(lái)水用水量;②水費(fèi)=自來(lái)水費(fèi)用+污水處理費(fèi).
(1)設(shè)小王家一個(gè)月的用水量為噸,所應(yīng)交的水費(fèi)為元,請(qǐng)寫出與的函數(shù)關(guān)系式;
(2)隨著夏天的到來(lái),用水量將增加.為了節(jié)省開支,小王計(jì)劃把7月份的水費(fèi)控制在不超過(guò)家庭月收入的.若小王家的月收入為元,則小王家7月份最多能用多少噸水?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說(shuō)明理由;
(2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長(zhǎng)線交于點(diǎn)G,AD的延長(zhǎng)線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點(diǎn),與y軸交于點(diǎn)C.
(1)設(shè)AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點(diǎn)D為直線BC下方拋物線上一動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時(shí)成立,請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) 分別交y軸、x 軸于A、B兩點(diǎn),拋物線 過(guò)A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個(gè)拋物線于點(diǎn)N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線 與直線 在第二象限的交點(diǎn),AB⊥ 軸于點(diǎn)B且S△ABO= .
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C的坐標(biāo);
(3)求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國(guó)各地,近年來(lái)它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬(wàn)元,2016年產(chǎn)值達(dá)到1000萬(wàn)元.
(1)求2015年、2016年蔬菜產(chǎn)值的平均增長(zhǎng)率是多少?
(2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(zhǎng)(即年增長(zhǎng)率與前兩年的年增長(zhǎng)率相同),那么請(qǐng)你估計(jì)2017年該公司的蔬菜產(chǎn)值達(dá)到多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為( )
A.20
B.25
C.30
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,BE平分∠ABC交AC于點(diǎn)E,AD、BE相交于點(diǎn)F,過(guò)點(diǎn)D作DG∥AB,過(guò)點(diǎn)B作BG⊥DG交DG于點(diǎn)G.下列結(jié)論:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正確的是_________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com