【題目】在方格中的位置如圖所示.

1)請在方格紙上(小方格的邊長為1)建立平面直角坐標(biāo)系,使得A、B兩點的坐標(biāo)分別為,.并求出C點的坐標(biāo);

2)作出關(guān)于x軸對稱的,并寫出兩點的坐標(biāo).

3)求的面積。

【答案】1)畫圖見解析,;(2)畫圖見解析,B;(32.5

【解析】

1)根據(jù)點A的坐標(biāo)可知坐標(biāo)原點在點A左邊兩個單位,上邊一個單位,再求出C的坐標(biāo)即可;

2)找到與x軸對稱的且到x軸的距離為1A1,同法做其他點的對應(yīng)點即可得到ABC關(guān)于x軸對稱的A1B1C1

3)利用ABC所在的矩形的面積減去四周三個小直角三角形的面積進行計算求解.

1)建立的平面直角坐標(biāo)系如下所示:

其中C點的坐標(biāo)為:C3,-3);

2)所作圖形如上所示,其中B1,C1的坐標(biāo)分別為:(14),(33);

3SABC=2×3-×1×3-×2×1-×2×1

=6-3.5

=2.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,若分得的兩個小三角形中一個三角形為等腰三角形,另一個三角形的三個內(nèi)角與原來三角形的三個內(nèi)角分別相等,則稱這條線段叫做這個三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點,若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動點D從點A出發(fā),在AB邊上以每秒1個單位的速度向點B運動,連結(jié)CD,作點A關(guān)于直線CD的對稱點E,設(shè)點D運動時間為t(s).

(1)若△BDE是以BE為底的等腰三角形,求t的值;

(2)若△BDE為直角三角形,求t的值;

(3)當(dāng)S△BCE時,求所有滿足條件的t的取值范圍(所有數(shù)據(jù)請保留準確值,參考數(shù)據(jù):tan15°=2﹣).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.

(1)求∠DAF的度數(shù);

(2)如果BC=10cm,求△DAF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點,與軸交于點,直線經(jīng)過兩點.

求拋物線的解析式;

上方的拋物線上有一動點

如圖,當(dāng)點運動到某位置時,以,為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點的坐標(biāo);

如圖,過點的直線于點,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,點P在邊AB上,沿著PC折疊紙片使B點落在邊AD上的E點處,過點EEF∥ABPCF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)若tan∠BCP=,AB=3cm,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,它與軸的兩個交點分別為.對于下列命題:;②;③;④.其中正確的有(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案