【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
【答案】B
【解析】解:(1)由表可知,x=1時(shí),二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣4,故本小題錯(cuò)誤;
(2)當(dāng)x=0時(shí),y=-3,∴拋物線與y軸交點(diǎn)為(0,-3),故本小題正確;
(3)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),分別為(﹣1,0),(3,0),故對(duì)稱軸為: =1,故本小題正確;
(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),分別為(﹣1,0),(3,0),故一元二次方程ax2+bx+c=0的解是x1=-1,x2=3,正確.
綜上所述,正確結(jié)論的個(gè)數(shù)是3.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)E,AB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)坐標(biāo)為( 。
A. (﹣3,7) B. (﹣1,7) C. (﹣4,10) D. (0,10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)a、b都是實(shí)數(shù),且滿足2a﹣b=6,就稱點(diǎn)P為完美點(diǎn).
(1)判斷點(diǎn)A(2,3)是否為完美點(diǎn)?
(2)完美點(diǎn)一定不在第 象限;
(3)已知關(guān)于m、n的方程組,當(dāng)t為何值時(shí),以方程組的解為坐標(biāo)的點(diǎn)B是完美點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知CD是經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB.E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請(qǐng)解決下面問題:
①如圖1若∠BCA=90°,∠=90°、探索三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
②如圖2,若0°<∠BCA<180°, 請(qǐng)?zhí)砑右粋(gè)關(guān)于∠與∠BCA關(guān)系的條件___ ____使①中的結(jié)論仍然成立;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請(qǐng)寫出三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長(zhǎng)線上--點(diǎn),作BC⊥AD,與AD延長(zhǎng)線交于點(diǎn)C.且∠CBD=∠A.
(1)判斷直線BD與⊙0的位置關(guān)系,并證明你的結(jié)論;
(2)若∠A=30,OA=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新修的花園小區(qū)中,有一條“Z”字形綠色長(zhǎng)廊ABCD,如圖,AB∥CD,在AB、BC、CD三段綠色長(zhǎng)廊上各修建一涼亭E、M、F,且BE=CF,M是BC的中點(diǎn),E、M、F在一條直線上.若在涼亭M與F之間有一池塘,在用皮尺不能直接測(cè)量的情況下,你能知道M與F之間的距離嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)向全校2400名學(xué)生發(fā)起了愛心捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖1和圖2,請(qǐng)根據(jù)相關(guān)信息,解答系列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖1中m的值是 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com