【題目】已知:如圖,△ABC中,∠A的平分線AD和邊BC的垂直平分線ED相交于點(diǎn)D,過點(diǎn)DDF垂直于ACAC的延長(zhǎng)線于點(diǎn)F.求證:AB﹣AC=2CF.

【答案】詳見解析.

【解析】

根據(jù)角平分線的性質(zhì)首先得出DF=DM,再利用全等三角形的判定定理求出AFD≌△AMD,即可得出AF=AM,再利用垂直平分線的性質(zhì)得出CD=BD,進(jìn)而得出RtCDFRtBDM,即可得出CF=BM,即可得出答案.

證明:連接CDDB,作DMAB于一點(diǎn)M

AD平分∠A,DFACDMAB,

DF=DM(角平分線上的點(diǎn)到角的兩邊距離相等)

AD=AD,

AFD=AMD=90°

∴△AFD≌△AMD,

AF=AM,

DE垂直平分線BC

CD=BD(垂直平分線上的點(diǎn)到線段兩端點(diǎn)距離相等),

FD=DM,∠AFD=DMB=90°,

RtCDFRtBDM,

BM=CF

AB=AM+BM,AF=AC+CF,AF=AMBM=CF,

AB=AC+2CF

ABAC=2CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,E為AB延長(zhǎng)線上的點(diǎn),作OD∥BC交EC的延長(zhǎng)線于點(diǎn)D,連接AD.
(1)求證:AD=CD;
(2)若DE是⊙O的切線,CD=3,CE=2,求tanE和cos∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x與雙曲線y= (x>0)交于點(diǎn)A,將直線y= x向下平移個(gè)6單位后,與雙曲線y= (x>0)交于點(diǎn)B,與x軸交于點(diǎn)C,則C點(diǎn)的坐標(biāo)為;若 =2,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)陽公園有四棵古樹A,B,C,D (單位:米).

(1)請(qǐng)寫出A,B,C,D四點(diǎn)的坐標(biāo);

(2)為了更好地保護(hù)古樹,公園決定將如圖所示的四邊形EFGH用圍欄圈起來,劃為保護(hù)區(qū),請(qǐng)你計(jì)算保護(hù)區(qū)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因?yàn)椤?=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因?yàn)锳B與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因?yàn)椤?=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過A,B兩點(diǎn),過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點(diǎn)E,若OC=CD,四邊形BDCE的面積為2,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(-2)+(-3)+5

(2)×5÷×5

(3)12-7×(-4)+8÷(-2)

(4)-14+(2-5)2-2

(5)2÷(-2)+0÷7-(-8)×(-2)

(6)(-1)5×(-5)÷[(-3)2+2×(-5)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠ACB90°,ACBC,AEBC邊上的中線,過點(diǎn)CAE 的垂線CF垂足為F,過點(diǎn)BBD⊥BC,CF的延長(zhǎng)線于點(diǎn)D.

(1)求證:AECD.

(2)AC12 cm,BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D向終點(diǎn)D勻速運(yùn)動(dòng),設(shè)點(diǎn)P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案