【題目】如圖,在一次海警演習(xí)中,A、B兩地分別同時派出甲、乙兩快艇營救一貨輪C,已知B地位于A地正西方向相距84海里位置,貨輪C位于A地正北方向,位于B地北偏東48.2°方向(所有數(shù)據(jù)精確到個位,sin48.2°≈0.7,cos48.2°≈0.6,tan48.2°≈1.05)
(1)求A、B兩地分別與貨輪C的距離;
(2)若乙快艇每小時比甲快艇多行駛20海里,且它們同時達(dá)到貨輪C位置,求甲、乙快艇的速度.
【答案】(1)A、B兩地分別與貨輪C的距離為80海里、120海里;(2)甲、乙兩快艇的速度分別為40海里/時、60海里/時.
【解析】
(1)根據(jù)題意得出各角的度數(shù),進(jìn)而得出BC的長,即可得出AC的長.
(2)設(shè)甲快艇的速度為x海里/時,根據(jù)題意列出分式方程解答即可.
解:(1)依題,在Rt△ABC中,∠C=48.2°
∴sin48.2°=,tan48.2°=
∴BC,AC
即A、B兩地分別與貨輪C的距離為80海里、120海里.
(2)設(shè)甲快艇的速度為x海里/時,則乙快艇的速度為(x+20)海里/時,
∴
解得x=40
經(jīng)檢驗x=40是原方程的解,符合題意,
答:甲、乙兩快艇的速度分別為40海里/時、60海里/時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是邊長為5的正方形,頂點A在y軸正半軸上,頂點B在x軸正半軸上,OA,OB的長滿足|OA﹣4|+(OB﹣3)2=0.
(1)求OA,OB的長;
(2)求點D的坐標(biāo);
(3)在y軸上是否存在點P,使△PAB是以AB為腰的等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于南開(融僑)中學(xué)旁邊的“轉(zhuǎn)轉(zhuǎn)橋”是重慶市網(wǎng)紅景點之一,在橋下人形天橋(如圖1),其平面圖如圖2所示,天橋入口D點有一臺階DC,CD=0.5米,其坡度為i=1:0.75,在DC上方有一平層BC=1米,且BC與地面MN平行,在天橋頂端A點測得B點的俯角為63°,且AD⊥MN,為知道臺階AB的長度,請根據(jù)以上信息,幫小亮計算出臺階AB的長度,約為( 。┚_到0.1米,參考數(shù)據(jù):sin63°≈0.90,cos63°≈0.45,tan63°≈2.00
A. 1.4米 B. 2.5米 C. 2.8米 D. 2.9米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測試,測試結(jié)果分為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列題:
(1)本次調(diào)查活動采取了 的調(diào)查方式.(填“普查”或“抽樣調(diào)查”)
(2)本次調(diào)查共調(diào)查了________人,圖(2)中選項C的圓心角為 ______度.
(3)求本次測試結(jié)果為B等級的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計圖;
(4)若該中學(xué)八年級共有900名學(xué)生,請你估計八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b);如果ac=b,那么(a,b)=c,例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:(3,81)= ,(﹣,﹣)= ,(2,(2,256))= ;
(2)若(3,4)+(3,6)=(3,x),求x的值;
(3)證明:(2,3)+(2,5)=(8,3375).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點.規(guī)定“把點先作關(guān)于軸對稱,再向左平移1個單位”為一次變化.經(jīng)過第一次變換后,點的坐標(biāo)為_______;經(jīng)過第二次變換后,點的坐標(biāo)為_____;那么連續(xù)經(jīng)過2019次變換后,點的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象與x軸交于點A(﹣1,0),與y軸交于點B.且對稱軸為x=1.則下面的四個結(jié)論:
①當(dāng)x>﹣1時,y>0;
②一元二次方程ax2+bx+c=0的兩根為x1=﹣1,x2=3;
③當(dāng)y<0時,x<﹣1;
④拋物線上兩點(x1,y1),(x2,y2).當(dāng)x1>x2>2時,y1>y2
其中正確結(jié)論的個數(shù)是( 。
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com