在平面直角坐標(biāo)系中,已知三個(gè)頂點(diǎn)的坐標(biāo)分別為

(1)畫出,并求出所在直線的解析式。
(2)畫出繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得到的,并求出在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積。
(1)如圖所示,即為所求!ぁぁぁぁ1分
設(shè)所在直線的解析式為

 解得,∴。 ················3分
(2)如圖所示,即為所求 ···4分
由圖可知,  ·········5分
  ·············6分
··············8分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分).如圖1,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且.
(1)求直線AC的解析式;
(2)在y軸上是否存在點(diǎn)P,直線PD與矩形對(duì)角線AC交于點(diǎn)M,使得為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)拋物線經(jīng)過(guò)怎樣平移,才能使得平移后的拋物線過(guò)點(diǎn)D和點(diǎn)E(點(diǎn)E在y軸正半軸上),且沿DE折疊后點(diǎn)O落在邊AB上處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)COB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線ABCD交點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AB以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P,垂足為H,連接,.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.
①若△MPH與矩形AOCD重合部分的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問(wèn)是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸交于點(diǎn)A、 B,點(diǎn)軸上,若,求直線PB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一次函數(shù)的圖象與直線y=-x+1平行,且過(guò)點(diǎn)(8,2),那么此一次函數(shù)的解析式為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011?濱州)關(guān)于一次函數(shù)y=﹣x+1的圖象,下列所畫正確的是( 。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一次函數(shù)y= 3 x + 2的圖象不經(jīng)過(guò)第        象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分9分)已知AB兩地的路程為240千米,某經(jīng)銷商每天都要用汽
車或火車將x噸保鮮品一次性由A地運(yùn)往B地,受各種因素限制,下一周只能采用汽車和
火車中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.。現(xiàn)在有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表,行駛路程S
(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖13中①),上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖13
中②)等信息如下:

        
(1)汽車的速度為_(kāi)_________千米/時(shí),火車的速度為_(kāi)________千米/時(shí);
(2)設(shè)每天用汽車和火車運(yùn)輸?shù)目傎M(fèi)用分別為y(元)和y(元),分別求yyx的函數(shù)關(guān)系式(不必寫出x的取值范圍)及x為何值時(shí)yy;(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)
(3)請(qǐng)你從平均數(shù)、折線圖走勢(shì)兩個(gè)角度分析,建議該經(jīng)銷商應(yīng)提前下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一次函數(shù)y=3x-2的函數(shù)值y隨自變量x值的增大而_____________(填“增大”或“減小”).

查看答案和解析>>

同步練習(xí)冊(cè)答案