【題目】如圖,四邊形ABCD是矩形紙片,AD=10,CD=8,在CD邊上取一點E,將紙片沿AE折疊,使點D落在BC邊上的F.

(1)AF的長=_____.

(2)BF的長=______.

(3)CF的長=_____.

(4)DE的長.

【答案】110;(26;(34;(4DE=5.

【解析】

1)根據(jù)折疊的性質(zhì)得AF=AD=10;
2)先根據(jù)矩形的性質(zhì)得AB=CD=8,在RtABF中,利用勾股定理計算出BF=6,
3)根據(jù)矩形的性質(zhì)得BC=AD =10,則CF=BC-BF=4,
4)設(shè)DE=x,則EF=x,EC=8-x,然后在RtECF中根據(jù)勾股定理得到42+8-x2=x2,再解方程即可得到DE的長.

解::(1)根據(jù)折疊可得AF=AD=10,
故答案為:10;
2)∵四邊形ABCD是矩形,
AB=CD=8,∠B=90°
在直角三角形中:BF==6,
故答案為:6;
3)∵四邊形ABCD是矩形,
BC=AD=10,
CF=BC-BF=10-6=4,
故答案為:4

4)∵折疊AFE≌△ADE,

EF=DE,

設(shè)DE=x,則EF=x,

CD=8

CE=CD-DE=8-x,

RtCEF中,∠C=90°,由勾股定理得:CE2+CF2=EF2

CE=4,

(8-x)2+42=x2,

解得:x=5

DE的長等于5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,

以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個數(shù)為123n

如果圖中的圓圈共有13層,請解決下列問題:

1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,23,4,……,則最底層最左

邊這個圓圈中的數(shù)是 ;

2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20,……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______

3)求圖4中所有圓圈中各數(shù)的絕對值之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E對角線BD上,且∠BAE=22.5°,EFAB,垂足為點F,則EF的長為(

A. 1B. 4-C. D. -4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復(fù)疑無路”.

(1)小明回答該問題時,對第二個字是選“重”還是選“窮”難以抉擇,若隨機選擇其中一個,則小明回答正確的概率是 ;

(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點D,E分別是△ABCBC,AC邊的中點.

(1)如圖①,若AB=10,求DE的長;

(2)如圖②,FAB邊上的一點,FG//AD,ED的延長線于點G.求證:AF=DG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限作等邊△ABC.

(1)若點C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;

(2)點P(2,m)在第一象限,過點P作x軸的垂線,垂足為D,當△PAD與△OAB相似時,P點是否在(1)中反比例函數(shù)圖象上?如果在,求出P點坐標;如果不在,請加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為 0.8m,2.5m 且粗細相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當只裁剪長為 0.8m 的用料時,最多可剪 根;

方法②:當先剪下 1 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;

方法③:當先剪下 2 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)計劃對面積為1600m2的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用5天.若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,規(guī)定甲乙兩隊單獨施工的總天數(shù)不超過25天完成,且施工總費用最低,則最低費用為__________萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

同步練習(xí)冊答案