【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,下列結(jié)論正確的有( 。﹤.

①△BED是等邊三角形;②AEBC; ③△ADE的周長等于BD+BC;④∠ADE=∠DBC

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BDAE=CD,∠DBE=60°,于是可判斷△BDE為等邊三角形,則有DE=BD,所以△AED的周長=BD+AC,且∠C=BAE=ABC =60°得①②③正確;根據(jù)三角形內(nèi)角和定理得∠ADE=ABE,結(jié)合∠ABE+ABD=DBC+ABD=60°,可得④正確.

∵在等邊△ABC中,△BCD繞點B逆時針旋轉(zhuǎn)60°得到△BAE
BE=BD,AE=CD,∠DBE=60,∠C=BAE=60°
∴△BDE為等邊三角形,∠ABC=BAE=60°
DE=BD,AEBC;
∴△AED的周長=DE+AE+AD=BD+CD+AD=BD+AC= BD+BC

故①②③正確

△ABC,△BDE為等邊三角形,

∴∠BED=BAC=60°

又∵對頂角相等

∴∠ADE=ABE

∵∠ABE+ABD=DBC+ABD=60°

∴∠ADE=∠DBC

故④正確

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點是坐標原點,點的坐標是,點的坐標是,點的坐標是,且滿足。

1)請用含的代數(shù)式分別表示;

2)若,求直線軸的交點的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為箏形.

(1)寫出箏形的兩個性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點E、F分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(【材料閱讀】閱讀下列一段文字,然后回答下列問題.

已知平面內(nèi)兩點Mx1y1)、Nx2,y2),則這兩點間的距離可用下列公式計算:

MN=

例如:已知P31)、Q1,2),則這兩點間的距離PQ==

直接應(yīng)用

1)已知A2,-3)、B-4,5),試求A、B兩點間的距離;

2)已知ABC的頂點坐標分別為A04)、B﹣1,2)、C4,2),你能判定ABC的形狀嗎?請說明理由.

深度應(yīng)用

3如圖,在平面直角坐標系xOy中,二次函數(shù)y=x2﹣4的圖象與x軸相交于兩點A、B(點A在點B的左邊)

求點A、B的坐標;

設(shè)點Pm,n)是以點C3,4)為圓心、1為半徑的圓上一動點,求PA2+PB2的最大值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形ABC中,D、E分別是AB、BC上的點,且ADBE,AECD相交于點P,CFAE

1)求∠CPE的度數(shù);

2)求證:PFPC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰RtABC中,∠ACB90°,CBCA,直線ED經(jīng)過點C,過點AADED于點D,過點BBEED于點E,求證:△BEC≌△CDA

(模型應(yīng)用)

2)如圖2,已知直線l1yx+3x軸交于點A,與y軸交于點B,將直線l1繞點A逆時針旋轉(zhuǎn)45°至直線l2;求直線l2的函數(shù)表達式;

3)如圖3,平面直角坐標系內(nèi)有一點B3,﹣4),過點BBAx軸于點A、BCy軸于點C,點P是線段AB上的動點,點D是直線y=﹣2x+1上的動點且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(- 3,4),點B的坐標為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD,直線l與直線AB,CD相交于點E,F,點P是射線EA上的一個動點(不包括端點E),將△EPF沿PF折疊,使頂點E落在點Q處.

⑴若∠PEF48°,點Q恰好落在其中的一條平行線上,則∠EFP的度數(shù)為

⑵若∠PEF75°,∠CFQPFC,求∠EFP的度數(shù).

查看答案和解析>>

同步練習冊答案