【題目】如圖,⊙O的直徑AB垂直弦CD于點(diǎn)E,點(diǎn)F在AB的延長(zhǎng)線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)連接OC,由OA=OA可知∠ACO=∠A,再根據(jù)∠FCB=∠A可知∠ACO=∠FCB,由于AB是⊙O的直徑,所以∠ACO+∠OCB=90°故∠FCB+∠OCB=90°故可得出結(jié)論;
(2)由AB是⊙O的直徑,CD⊥AB可知
試題解析: (1)連接OC,
∵OA=OC,
∴∠ACO=∠A,
又∵∠FCB=∠A
∴∠ACO=∠FCB,
又∵AB是⊙O的直徑
∴∠ACO+∠OCB=90°,∠FCB+∠OCB=90°
∴直線CF為⊙O的切線,
(2)∵AB是⊙O 直徑
∴∠ACB=90°
∵DC⊥AB
∴
∴BC=BD,∠A=∠D
∴
考點(diǎn): 1.切線的判定;2.圓周角定理;3.解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在航線的兩側(cè)分別有觀測(cè)點(diǎn)A和B,點(diǎn)A到航線的距離為2km,點(diǎn)B位于點(diǎn)A北偏東60°方向且與A相距10km處.現(xiàn)有一艘輪船從位于點(diǎn)B南偏西76°方向的C處,正沿該航線自西向東航行,5min后該輪船行至點(diǎn)A的正北方向的D處.
(1)求觀測(cè)點(diǎn)B到航線的距離;
(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù): 1.73,sin76°≈0.97,cos≈0.24,tan76°≈0.4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列出下列問(wèn)題中的函數(shù)關(guān)系式,并判斷它們是否為反比例函數(shù).
(1)某農(nóng)場(chǎng)的糧食總產(chǎn)量為1 500t,則該農(nóng)場(chǎng)人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關(guān)系式;
(2)在加油站,加油機(jī)顯示器上顯示的某一種油的單價(jià)為每升4.75元,總價(jià)從0元開(kāi)始隨著加油量的變化而變化,則總價(jià)y(元)與加油量x(L)的函數(shù)關(guān)系式;
(3)小明完成100m賽跑時(shí),時(shí)間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+2圖象與反比例函數(shù)y2=圖象相交于A,B兩點(diǎn),已知點(diǎn)B的坐標(biāo)為(3,﹣1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)請(qǐng)直接寫(xiě)出不等式kx﹣≤﹣2的解集;
(3)點(diǎn)C為x軸上一動(dòng)點(diǎn),當(dāng)S△ABC=3時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點(diǎn)A(2,1).
(1)分別求出這兩個(gè)函數(shù)的解析式;
(2)當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點(diǎn)為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點(diǎn)P(﹣1,5)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠C=40°,P,Q分別在BC,CA上,AP,BQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD中,∠ACB=∠ECD=a,且AC=BC,EC=DC,AE、BD交于P點(diǎn),連CP
(1)求證:△ACE≌△BCD
(2)求∠APC的度數(shù)(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com