【題目】如圖,在航線的兩側分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km處.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5min后該輪船行至點A的正北方向的D處.

(1)求觀測點B到航線的距離;

(2)求該輪船航行的速度(結果精確到0.1km/h).(參考數(shù)據(jù): 1.73,sin76°≈0.97,cos≈0.24,tan76°≈0.4.01)

【答案】(1) 觀測點B到航線l的距離為3km;(2該輪船航行的速度約為40.6km/h

【解析】試題分析:(1)設ABl交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;

(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.

試題解析:(1)設ABl交于點O,

RtAOD中,

∵∠OAD=60°AD=2km),

OA==4km),

AB=10km),

OB=AB﹣OA=6km),

RtBOE中,∠OBE=OAD=60°,

BE=OBcos60°=3km),

答:觀測點B到航線l的距離為3km;

2∵∠OAD=60°AD=2km),∴OD=AD·tan60°=2 ,

∵∠BEO=90°,BO=6,BE=3,∴OE==3,

DE=OD+OE=5km);

CE=BEtanCBE=3tan76°,

CD=CEDE=3tan76°53.38km),

5min= (h),v==12CD=12×3.3840.6km/h),

答:該輪船航行的速度約為40.6km/h

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,將沿翻折得到,射線與射線相交于點,若是等腰三角形,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點D,E.

(1)求證:AE=2CE;

(2)連接CD,請判斷BCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,自變量的取值范圍選取錯誤的是

A.y=2x2中,x取全體實數(shù)

B.y=中,xx≠-1的實數(shù)

C.y=中,xx≥2的實數(shù)

D.y=中,xx≥-3的實數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于給定的兩點,若存在點,使得三角形的面積等于1,則稱點為線段的“單位面積點”. 已知在平面直角坐標系中,為坐標原點,點. 若將線段沿軸正方向平移個單位長度,使得線段上存在線段的“單位面積點”,則的取值范圍是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax 2bxc的頂點為M1,4),與x軸的右交點為A,與y軸的交點為B,點C與點B關于拋物線的對稱軸對稱,且SABC 3

1)求拋物線的解析式;

2)點Dy軸上一點,將點DC點逆時針旋轉90°得到點E若點E恰好落在拋物線上,請直接寫出點D的坐標;

3設拋物線的對稱軸與直線AB交于點F,問:在x軸上是否存在點P,使得以P、AF為頂點的三角形與△ABC相似?若存在,求點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=2AB,點E,F(xiàn)分別是AD,BC的中點,連接AF與BE,CE與DF分別交于點M,N兩點,則四邊形EMFN是(  )

A. 正方形 B. 菱形 C. 矩形 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,小華和媽媽到某景區(qū)游玩,小明想利用所學的數(shù)學知識,估測景區(qū)里的觀景塔的高度,他從點處的觀景塔出來走到點.沿著斜坡點走了米到達點,此時回望觀景塔,更顯氣勢宏偉.點觀察到觀景塔頂端的仰角為,再往前走到處,觀察到觀景塔頂端的仰角,測得之間的水平距離米,則觀景塔的高度約為( ) . ()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB垂直弦CD于點E,FAB延長線上,∠BCF=∠A.

(1)求證:直線CF⊙O的切線;

(2)若⊙O的為5,DB=4.求sinD的

查看答案和解析>>

同步練習冊答案