【題目】已知:∠MON=α,點P是∠MON角平分線上一點,點A在射線OM上,作∠APB=180°-α,交直線ON于點B,PCONC.

1)如圖1,若∠MON=90°時,求證:PA=PB;

2)如圖2,若∠MON=60°時,寫出線段OB,OABC之間的數(shù)量關(guān)系,并說明理由;

3)如圖3,若∠MON=60°時,點B在射線ON的反向延長線上時,(2)中結(jié)論還成立嗎?若不成立,直接寫出線段OB,OABC之間的數(shù)量關(guān)系(不需要證明).

【答案】(1)證明見解析;(2)OA=OB+2BC,理由見解析;(3不成立,OA=2BC-OB.

【解析】試題分析:(1PDOM于點D由角平分線的性質(zhì)得到PC=PD再用ASA證明△APD≌△BPC,即可得到結(jié)論;.

2結(jié)論:OA=OB+2BCPDOM于點D同(1),可證APD≌△BPC,得到AD=BC

OPD≌△OPC得到OC=OD,即可得到結(jié)論;

3不成立,OA=2BC-OB

試題解析:解:1PDOM于點D

PMON的角平分線上,且PCONC,PC=PD

∵∠MON=90°∴∠APB=90°,CPD=90°,∴∠APD=∠BPC

∵∠PDA=∠PCB=90°,∴△APD≌△BPCASA),AP=BP

2結(jié)論:OA=OB+2BC理由如下:

PDOM于點D同(1),可證APD≌△BPCAD=BC

OPD≌△OPC,OC=ODOA-AD=OB+BC,OA=OB+2BC

3不成立,OA=2BC-OB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GEDC于點E,GFBC于點F,連結(jié)AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;

(2)若正方形ABCD的邊長為1,AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=9,AC=6,BC=12,點MAB邊上,且AM=3,過點M作直線MNAC邊交于點N,使截得的三角形與原三角形相似,則MN=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,CEBE的交點為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1

第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,

第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3……

n次操作,分別作∠ABEn1和∠DCEn1的平分線,交點為En.

(1)如圖①,求證:∠EBC;

(2)如圖②,求證:∠E1E;

(3)猜想:若∠Enb°,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全面二孩政策于201611日正式實施,黔南州某中學(xué)對八年級部分學(xué)生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):

A非常愿意    B愿意    C不愿意    D無所謂

如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:

1)試問本次問卷調(diào)查一共調(diào)查了多少名學(xué)生?并補全條形統(tǒng)計圖;

2)若該年級共有450名學(xué)生,請你估計全年級可能有多少名學(xué)生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?

3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學(xué)中隨機選取2名同學(xué)來談?wù)勊麄兊南敕,而本次調(diào)查回答“不愿意”的這些同學(xué)中只有一名男同學(xué),請用畫樹狀圖或列表的方法求選取到兩名同學(xué)中剛好有這位男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù)、我們定義一種新運算(其中均為非零常數(shù)).等式右邊是通常的四則運算.由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中、叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的、叫做正格線性數(shù)的正格數(shù)對.

(1)若,則 .

(2)已知,若正格線性數(shù),求滿足不等式組的所有的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.

甲種糖果

乙種糖果

丙種糖果

單價(元/千克)

20

25

30

千克數(shù)

40

40

20


(1)求該什錦糖的單價.
(2)為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,A點坐標(biāo)為(2,4),B點坐標(biāo)為(﹣3,﹣2),C點坐標(biāo)為(3,1).

(1)在圖中畫出△ABC關(guān)于y軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標(biāo);

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是4,點P是AD邊的中點,點E是正方形邊上的一點.若△PBE是等腰三角形,則腰長為

查看答案和解析>>

同步練習(xí)冊答案