【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA中點,點P在BC上以每秒1個單位的速度由C向B運動,設運動時間為t秒.
(1)△ODP的面積S= .
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(請直接寫出答案,不必寫過程)
【答案】
(1)10
(2)
解:∵PB∥OD,
∴當PB=OD時,四邊形PODB是平行四邊形,
∵OD=5,
∴PB=5,
∴PC=BC﹣PB=10﹣5=5,
∵點P在BC上以每秒1個單位的速度由C向B運動,
∴t=5
(3)
解:當OD=OP=PQ=5時,ODQP為菱形,
在Rt△OPC中,由勾股定理得:
PC= = =3,
∴t=3,CQ=CP+PQ=3+5=8,
∴Q點的坐標為(8,4)
(4)
解:△OPD為等腰三角形時,分三種情況:
①如果O為頂點,那么OP=OD=5,
由勾股定理可以求得PC=3,此時P1(3,4);
②如果P為頂點,那么PO=PD,
作PE⊥OA于E,則OE=ED=2.5,此時P2(2.5,4);
③如果D為頂點,那么DP=DO=5,
作DF⊥BC于F,由勾股定理,得PF=3,
∴P3C=5﹣3=2或P4C=5+3=8,此時P3(2,4),P4(8,4).
綜上所述,滿足條件的點P的坐標為P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).
【解析】解:(1)∵O為坐標原點,A(10,0),四邊形OABC為矩形,C(0,4),
∴OA=BC=10,OC=4,
∵點D是OA中點,
∴OD=DA= OA=5,
∴△ODP的面積S= ODOC= ×5×4=10.
所以答案是10;
【考點精析】解答此題的關鍵在于理解平行四邊形的性質的相關知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下,連接BE,判定△ABE的形狀(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算與化簡:
(1)(﹣ )×(﹣12)
(2)(﹣3)2÷(2 )﹣4×(﹣ )2
(3)x2y﹣3×( xy2﹣ yx2)+y2x,其中x=﹣2,y=1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=36°.
(1)作∠ABC的平分線BD,交AC于點D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)條件下,比較線段DA與BC的大小關系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為y=-3x+3,且l1與x軸交于點D,直線l2經過點A,B,直線l1,l2,交于點C.
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為4,P為正方形邊上一動點,運動路線是A→D→C→B→A,設P點經過的路程為,以點A、P、D為頂點的三角形的面積是.則下列圖象能大致反映與的函數(shù)關系的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com