【題目】如圖,l1、l2、l3兩兩相交于A、B、C三點(diǎn),它們與y軸正半軸分別交于點(diǎn)D、EF,若AB、C三點(diǎn)的坐標(biāo)分別為(1,yA)、(2yB)、(3,yC),且ODDE1,則下列結(jié)論正確的個(gè)數(shù)是(  )①EC3EA,②SABC1,③OF5,④2yAyAyC2

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;

②設(shè)過點(diǎn)B且與y軸平行的直線交AC于點(diǎn)G,則SABCSAGB+SBCG,易得:SAED,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,SABGSBCG,又易得GAC中點(diǎn),所以,SAGBSBGC,從而得結(jié)論;

③易知,BGDE1,又△BGC∽△FEC,列比例式可得結(jié)論;

④易知,點(diǎn)B的位置會(huì)隨著點(diǎn)A在直線x1上的位置變化而相應(yīng)的發(fā)生變化,所以④錯(cuò)誤.

①如圖,∵OEAA'CC',且OA'1,OC'3

,

EC3EA,

①正確;

②設(shè)過點(diǎn)B且與y軸平行的直線交AC于點(diǎn)G(如圖),則SABCSAGB+SBCG,

DE1OA'1,

SAED,

OEAA'GB'OA'A'B',

AEAG,

∴△AED∽△AGB且相似比=1,

∴△AED≌△AGB

SABG,

同理得:GAC中點(diǎn),

SABGSBCG,

SABC1

②正確;

③由②知:△AED≌△AGB

BGDE1,

BGEF,

∴△BGC∽△FEC,

,

EF3.即OF5

故③正確;

④易知,點(diǎn)B的位置會(huì)隨著點(diǎn)A在直線x1上的位置變化而相應(yīng)的發(fā)生變化,

故④錯(cuò)誤;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸于D,C兩點(diǎn),連接,,已知,

1)求拋物線的解析式;

2Py軸右側(cè)拋物線上一動(dòng)點(diǎn),連接,過點(diǎn)Py軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為項(xiàng)點(diǎn)的三角形與相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

3)設(shè)E為線段上一點(diǎn)(不含端點(diǎn)),連接,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,點(diǎn)C是圓上的一個(gè)動(dòng)點(diǎn),CAx軸,CBy軸,垂足分別為AB,DAB的中點(diǎn),如果點(diǎn)C在圓上運(yùn)動(dòng)一周,那么點(diǎn)D運(yùn)動(dòng)過的路程長為( 。

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.

(1)求線段BC的長;

(2)當(dāng)0≤y≤3時(shí),請(qǐng)直接寫出x的范圍;

(3)點(diǎn)P是拋物線上位于第一象限的一個(gè)動(dòng)點(diǎn),連接CP,當(dāng)∠BCP90o時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某果農(nóng)在其承包的果園中種植了60棵桔子樹,每棵桔子樹的產(chǎn)量是100kg,果農(nóng)想增加桔子樹的棵數(shù)來增產(chǎn),但增加果樹會(huì)導(dǎo)致每棵樹的光照減少,使得單棵果樹產(chǎn)量減少,試驗(yàn)發(fā)現(xiàn)每增加1棵桔子樹,單棵桔子樹的產(chǎn)量減少0.5kg.

(1)在投入成本最低的情況下,增加多少棵桔子樹時(shí),可以使果園總產(chǎn)量達(dá)到6650kg?

(2)設(shè)增加x棵桔子樹,考慮實(shí)際增加桔子樹的情況,10≤x≤40,請(qǐng)你計(jì)算一下,果園總產(chǎn)量最多為多少kg,最少為多少kg?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,直線MN⊙OAB兩點(diǎn),AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

1)求證:DE⊙O的切線;

2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑ADBC于點(diǎn)E,延長AD至點(diǎn)F,使DF2OD,連接FC并延長交過點(diǎn)A的切線于點(diǎn)G,且滿足AGBC,連接OC,若cosBAC,BC6

1)求證:∠COD=∠BAC

2)求⊙O的半徑OC;

3)求證:CF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC內(nèi)一點(diǎn),BDCD,E、F、G、H分別是邊AB、BDCD、AC的中點(diǎn).若AD10BD8,CD6,則四邊形EFGH的周長是( 。

A.24B.20C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.

1)請(qǐng)你用直尺和圓規(guī)補(bǔ)全這個(gè)輸水管道的圓形截面(保留作圖痕跡);

2)若這個(gè)輸水管道有水部分的水面寬AB24cm,水面最深地方的高度為8cm,求這個(gè)圓形截面的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案